
MADHAVA MATHEMATICS COMPETITION, January 4, 2015

Part I

N.B. Each question in Part I carries 2 marks.

1. How many five digit positive integers that are divisible by 3 can be formed using the digits
0, 1, 2, 3, 4 and 5, without any of the digits getting repeated?
A) 216 B) 96 C) 120 D) 625 .

Answer: A) Numbers of the form abcde with distinct digits from the set {0, 1, 2, 3, 4, 5}
such that a 6= 0 and 3 | (a + b + c + d + e). Since 3|(1 + · · · + 5) = 15, there are 5! = 120
such numbers with no digit zero. If 0 is included, then 3 must be excluded; so for a = 1, 4!
numbers like 10245; for a = 2, 4! numbers like 20145; for a = 4, 4! numbers like 40245; for
a = 5, 4! numbers like 50124. So 120 + 96 = 216 in all.

2. If I =
∫ 1

0

1
1 + x8

dx, then

A) I <
1
2

B) I <
π

4
C) I >

π

4
D) I =

π

4
.

Answer: C) Note that 0 < x < 1 ⇒ x8 < x2 ⇒ 1+x8 < 1+x2 ⇒ 1/(1+x8) > 1/(1+x2).
So I >

∫ 1
0 1/(1 + x2)dx = π/4.

3. Find a and b so that y = ax+ b is a tangent line to the curve y = x2 + 3x+ 2 at x = 3.
A) a = 9, b = −7 B) a = 3, b = −2 C) a = −9, b = 7 D) a = −3, b = 2.

Answer: A) Since for f(x) = x2 + 3x + 2, f ′(x) = 2x + 3, the tangent at x = 3 is
y − f(3) = f ′(3)(x− 3) i.e. y − 20 = 9(x− 3) or y = 9x− 7.

4. Suppose p is a prime number. The possible values of gcd of p3 + p2 + p+11 and p2 +1 are
A) 1,2,5 B) 2,5,10 C) 1,5,10 D) 1,2,10.

Answer: B) Let a = p3 + p2 + p + 11, b = p2 + 1, and d = gcd of a and b. Then since
a = b(p+ 1) + 10, d divides 10. So d = 1, 2, 5 or 10. But for p = 2, we get d = 5 and for odd
p, both a, b are even, hence d is even. So d 6= 1.

5. Consider all 2× 2 matrices whose entries are distinct and belong to {1, 2, 3, 4}. The sum
of determinants of all such matrices is
A) 4! B) 0 C) negative D) odd.

Answer: B) There are in all 4! = 24 matrices. These can be taken in pairs like A =
(

a b
c d

)
and B =

(
c d
a b

)
where B is obtained by interchanging the rows of A; so detA = −detB or

detA+ detB = 0.

6. Choose the correct alternative:

A) The Taylor series of sin
1
x

about x =
2
π

does not exist.

B) The coefficient of
(
x− 2

π

)2

in the Taylor series of sin
1
x

about x =
2
π

is
−π4

32
.

C) The Taylor series of sin
1
x

about x =
2
π

has negative powers of x.

D) The coefficient of
(
x− 2

π

)2

in the Taylor series of sin
1
x

about x =
2
π

is 0.

Answer: B) For f(x) = sin(1/x), f ′(x) = −(1/x2) cos(1/x) and f ′′(x) = (2/x3) cos(1/x)−
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(1/x4) sin(1/x). So f(2/π) = 1, f ′(2/π) = 0, and f ′′(2/π) = −π4/16. So the Taylor series is

f(x) = f(2/π) + f ′(2/π)(x− 2/π) +
1
2!
f ′′(2/π)(x− 2/π)2 + · · ·

= 1 +
1
2

[
−π4

16

]
(x− 2/π)2 + · · · .

7. Consider all right circular cylinders for which the sum of the height and circumference of
the base is 30 cm. The radius of the one with maximum volume is

A) 3 B) 10 C)
10
π

D)
π

10
.

Answer: C) Let x and h be the radius of base and height of a cylinder. Then the
circumference is 2πx+h. So 2πx+h = 30 by data. So the volume is v(x) = πx2h = πx2(30−
2πx) = 2π(15x2 − πx3). So v′(x) = 2π(30x − 3πx2), v′′(x) = 2π(30 − 6πx). Now v′(x) = 0
gives x = 10/π as the only non-zero critical value of x and v′′(10/π) = 2π(30− 60) < 0. So v
is maximum at x = 10/π.

8. In how many ways can you express 233557711 as a product of two numbers, ab, where
gcd(a, b) = 1 and 1 < a < b?
A) 5 B) 6 C) 7 D) 8.

Answer: C) Let x = 23, y = 35, z = 57, w = 711. Then the 7 ways are (x)(yzw), (y)(xzw)
(z)(xyw), (w)(xyz); (xy)(zw), (xz)(yw), (yz)(xw).

9. The value of
∫ b

a
sinx dx is

A) (b− a) sin c B) (b− a) cos c C)
sin c
b− a

D)
cos c
b− a

for some real number c such that a ≤ c ≤ b.

Answer: A) Since the function f(x) = sinx is continuous in [a, b], by the mean-value
theorem there is c ∈ [a, b] such that the integral = (b− a)f(c).

10. Suppose a, b, c are three distinct integers from 2 to 10 (both inclusive). Exactly one of
ab, bc and ca is odd and abc is a multiple of 4. The arithmetic mean of a and b is an integer
and so is the arithmetic mean of a, b and c. How many such (unordered ) triplets are possible?
A) 4 B) 5 C) 6 D) 7.

Answer: A) Since exactly one of ab, bc and ca is odd and 4|abc, two of the numbers must
be odd and the remaining must be a multiple of 4. Since the A.M., (a + b)/2, of a, b is an
integer, 2|(a+ b) so that a, b have the same parity so that both are odd by the above. Since
the A.M., (a+ b+ c)/3, of a, b, c is an integer, 3|(a+ b+ c). So the only triplets are (a, b, c) =
(3, 5, 4); (3, 7, 8); (5, 9, 4) and (7, 9, 8).

Part II

N.B. Each question in Part II carries 6 marks.

1. Let P (x) =
n∑

r=0

crx
r be a polynomial with real coefficients with c0 > 0 and

[n/2]∑
r=0

c2r

2r + 1
< 0. Prove that P has root in (−1, 1).
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Solution : P (0) = c0 > 0. [1 mk]

Note that

I =
∫ 1

−1
P (x)dx =

∫ 0

−1
P (x)dx+

∫ 1

0
P (x)dx (Put x = −t)

=
∫ 0

1
P (−t)(−dt) +

∫ 1

0
P (x)dx

=
∫ 1

0
[P (−x) + P (x)]dx

= 2
∫ 1

0

[n/2]∑
r=0

c2rx
2rdx = 2

[n/2]∑
r=0

c2r

2r + 1
. [3 mks]

By data,
[n/2]∑
r=0

c2r

2r + 1
< 0, so that I < 0. Now P is a continuous function on [−1, 1] and

its integral I over [−1, 1] is negative. Hence there is k ∈ [−1, 1] such that P (k) < 0.
(Recall: If f is a continuous function on [a, b] (a < b) such that f(x) ≥ 0 for all x ∈ [a, b],
then

∫ b
a f(x)dx ≥ 0.) Also, P (0) = c0 > 0. Therefore, since P is a continuous function

on [−1, 1], there is a number α between k and 0 such that P (α) = 0. [2 mks]

2. If |z1| = |z2| = |z3| > 0 and z1 + z2 + z3 = 0, then show that the points representing
the complex numbers z1, z2, z3 form an equilateral triangle.
Solution: There are unique numbers θ1, θ2, θ3 in [0, 2π) such that

zk = r(cos θk + i sin θk), k = 1, 2, 3, (1)

where r = |z1| = |z2| = |z3|. Then if A,B,C are the points represented by the numbers
z1, z2, z3 respectively, then they lie on the circle |z| = r with origin O as its centre. The
condition z1 + z2 + z3 = 0 gives

r[(cos θ1 + cos θ2 + cos θ3) + i(sin θ1 + sin θ2 + sin θ3)] = 0. [1 mk]

As r > 0, this gives cos θ1 + cos θ2 + cos θ3 = 0 and sin θ1 + sin θ2 + sin θ3 = 0. Hence

cos θ1 + cos θ2 = − cos θ3, sin θ1 + sin θ2 = − sin θ3. [2 mks]

Squaring and adding we get 1 + 1− 2(cos θ1 cos θ2 + sin θ1 sin θ2) = 1 or cos(θ2 − θ1) =
−1/2. So ∠AOB = θ2 − θ1 = 2π/3. Similarly ∠BOC = ∠COA = 2π/3. Hence the
chords AB,BC,CA subtend the same angle, 2π/3, at the centre and so AB = BC =
CA. So 4ABC is equilateral. [3 mks]

3. If 1, α1, α2, · · · , αn−1 are nth roots of unity, prove that

1
2− α1

+
1

2− α2
+ · · ·+ 1

2− αn−1
=

(n− 2)2n−1 + 1
2n − 1

.

Solution: First method: Let f(x) = xn − 1 so that α0 = 1, α1, α2, . . . , αn−1 are the
n roots of f(x) = 0 and of these α1, α2, . . . , αn−1 are non-real for n ≥ 3. For a fixed r,
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0 ≤ r ≤ n− 1, we have the identity

xn − 1
x− αr

=
xn − αn

r

x− αr

= xn−1 + xn−2αr + xn−3α2
r + · · ·+ xαn−2

r + αn−1
r . [1 mk]

Putting x = 2 and summing over r we get

n−1∑
r=0

2n − 1
2− αr

=
∑

r

2n−1 + 2n−2
∑

r

αr + · · ·+ 2
∑

r

αn−2
r +

∑
r

αn−1
r . (1)

Now the nth roots of unity are αr = e(2πi)r/n, r = 0, 1, . . . , n − 1. Thus αr = αr
1,

r = 0, 1, . . . , n− 1. For a fixed j, 1 ≤ j ≤ n− 1, we have

n−1∑
r=0

αj
r =

n−1∑
r=0

(αr
1)

j =
n−1∑
r=0

(αj
1)

r =
1− (αj

1)
n

1− αj
1

= 0 [3 mks]

since (αj
1)

n = (αn
1 )j = 1j = 1. So substituting in (1) we have

(2n − 1)
n−1∑
r=0

1
2− αr

= n2n−1

or 1 +
n−1∑
r=1

1
2− αr

=
n2n−1

2n − 1
(as α0 = 1)

or
n−1∑
r=1

1
2− αr

=
n2n−1

2n − 1
− 1 =

(n− 2)2n−1 + 1
2n − 1

. [2 mks]

Second method: Let f(x) = xn − 1 so that α0 = 1, α1, α2, . . . , αn−1 are the n roots
of f(x) = 0. Hence we have the identity

f(x) = (x− α0)(x− α1)(x− α2) · · · (x− αn−1). [2 mks]

Taking logarithm on both the sides and differentiating we get the identity

nxn−1

xn − 1
=

1
x− α0

+
1

x− α1
+

1
x− α2

+ · · ·+ 1
x− αn−1

,

for x different from all the αi. So putting x = 2 we get,

1
2− α0

+
1

2− α1
+

1
2− α2

+ · · ·+ 1
2− αn−1

=
n2n−1

2n − 1
, (α0 = 1)

1
2− α1

+
1

2− α2
+ · · ·+ 1

2− αn−1
=
n2n−1

2n − 1
− 1 =

(n− 2)2n−1 + 1
2n − 1

. [4 mks]
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4. Let f(x) be a monic polynomial of degree 4 such that f(1) = 10, f(2) = 20, f(3) = 30.
Find f(12) + f(−8).
Solution: First method: Note that f(1) = 10 means that the remainder is 10 when
f(x) is divided by x − 1. Similarly, the remainder is 10 × 2 when f(x) is divided by
x − 2 and the remainder is 10 × 3 when f(x) is divided by x − 3. Hence we can take
the degree 4 monic polynomial f(x) to be f(x) = (x − 1)(x − 2)(x − 3)(x − k) + 10x,
where k is a parameter. Then [4 mks]

f(12) = 11 · 10 · 9(12− k) + 120 = 990(12− k) + 120,
f(−8) = (−9)(−10)(−11)(−8− k)− 80 = −990(−8− k)− 80.

Adding, f(12) + f(−8) = 990(12− k + 8 + k) + 40 = 990(20) + 40 = 19840. [2 mks]

Second method: Let f(x) = x4 + ax3 + bx2 + cx+ d so that by the data we have the
equations

1 + a+ b+ c+ d = 10,
16 + 8a+ 4b+ 2c+ d = 20,
81 + 27a+ 9b+ 3c+ d = 30. [2 mks]

Reducing this system we get

a+ b+ c+ d = 9,
36b+ 54c+ 63d = 612,
6c+ 11d = 24.

Solving, we get c = 4− 11
6 d, b = 11 + d, a = −6− 1

6d. So [3 mks]

f(x) = x4 + (−6− 1
6
d)x3 + (11 + d)x2 + (4− 11

6
d)x+ d

= x4 − 6x3 + 11x2 + 4x+ d

[
−1

6
x3 + x2 − 11

6
x+ 1

]
.

Hence f(12) + f(−8) = 12000− 165d+ 7840 + 165d = 19840. [1 mk]

5. Find all solutions (a, b, c, n) in positve integers for the equation 2n = a! + b! + c!.
Solution: Let a ≤ b ≤ c. Then N = 1 + b!

a! + c!
a! is an integer since b!

a! and c!
a! are both

integers. Therefore, since 2n = a! · N, we see that a! divides 2n so that we must have
a = 1 or a = 2.

Let a = 1. Then 2n − 1 = b! + c! where left side is odd. So exactly one of b! and c!
must be odd. But k! is odd only when k = 1. Therefore b = 1 since 1 ≤ b ≤ c. So
2n − 2 = c! or 2(2n−1 − 1) = c! and left side is not divisible by 4. So c ≤ 3, and
(a, b, c, n) = (1, 1, 2, 2), (1, 1, 3, 3) are the corresponding solutions. [4 mks]

Let a = 2. Then 2 ≤ b ≤ c and 2(2n−1−1) = b!(1+ c!
b!). So as before, b = 2, 3. Let b = 2.

Then 2 ≤ c and 4(2n−2 − 1) = c! which is not possible as 8 divides c! for c ≥ 4 and 4
does not divide 2! and 3!. Let b = 3. Then 3 ≤ c and 8(2n−3− 1) = c! so that 4 ≤ c ≤ 5
as 16 divides c! for c ≥ 6. Here (a, b, c, n) = (2, 3, 4, 5), (2, 3, 5, 7) are the corresponding
solutions.

Thus the only possibilities are 22 = 1! + 1! + 2!, 23 = 1! + 1! + 3!, 25 = 2! + 3! + 4! and
27 = 2! + 3! + 5!. [2 mks]
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Part III

1. Suppose the polynomials f and g have the same roots and {x ∈ C : f(x) = 2015} =
{x ∈ C : g(x) = 2015}, then show that f = g. [13]

Solution: The polynomials f and g have the same roots. Let these roots be α1, . . . , αn,
and let the multiplicities of these be a1, . . . , an for f and b1, . . . , bn for g respectively.
Then the degree of f is N1 = a1 + · · · + an and the degree of g is N2 = b1 + · · · + bn,
and we have

f(x) = (x− α1)a1(x− α2)a2 · · · (x− αn)an ,

g(x) = (x− α1)b1(x− α2)b2 · · · (x− αn)bn ,

where N1 ≥ N2, say. (1)

[2 mks]

Next, by data the polynomials F (x) = f(x)−2015 and G(x) = g(x)−2015 also have the
same roots, say β1, . . . , βm. Let their multiplicities be a′1, . . . , a

′
m for F and b′1, . . . , b

′
m

for G respectively. Then degree of F = degree of f = N1 = a′1 + · · · + a′m and degree
of G = degree of g = N2 = b′1 + · · ·+ b′m, and we have

F (x) = (x− β1)a′
1(x− β2)a′

2 · · · (x− βm)a′
m ,

G(x) = (x− β1)b′
1(x− β2)b′

2 · · · (x− βm)b′
m .

Note that the sets S = {α1, . . . , αn} and T = {β1, . . . , βm} are disjoint.

Let, if possible, f 6= g i.e. let f − g be a non-zero polynomial. Then as α1, . . . , αn are
roots of both f and g, they are roots of f − g also. Similarly, β1, . . . , βm are roots of
F −G = f − g. Therefore, since the sets S, T are disjoint, we have

f − g = (x− α1) · · · (x− αn)(x− β1) · · · (x− βm)H(x), [5 mks]

for some polynomial H(x). Hence f − g is a non-constant polynomial of degree say K,
and

K ≥ n+m. (2)

To obtain a contradiction we consider the multiplicities of the roots of the derivative
f ′. Now α1 is a root of f with multiplicity a1 means that

f(x) = (x− α1)a1φ(x)

where φ(α1) 6= 0. This gives f ′(x) = a1(x− α1)a1−1φ(x) + (x− α1)a1φ′(x). So f ′(x) =
(x − α1)a1−1ψ(x) where ψ(x) = a1φ(x) + (x − α1)φ′(x). Therefore, since ψ(α1) =
a1φ(α1) 6= 0, we see that α1 is a root of f ′ with multiplicity a1− 1. Thus α1, . . . , αn are
roots of f ′ with multiplicities a1− 1, . . . , an− 1. Similarly, since f ′ = F ′, it follows that
β1, . . . , βm are also roots of f ′ with multiplicities a′1 − 1, . . . , a′m − 1. Hence the degree
of f ′ namely, N1 − 1, is such that

N1 − 1 ≥
n∑

i=1

(ai − 1) +
m∑

j=1

(a′j − 1) = N1 − n+N1 −m

or n+m− 1 ≥ N1. (3)
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By (1), the degree K of f − g satisfies K ≤ N1. So by (2) and (3), we get n+m ≤ K ≤
N1 ≤ n+m− 1 or n+m ≤ n+m− 1, contradiction. So f = g. [6 mks]

2. Give an example of a function which is continuous at exactly two points and differen-
tiable at exactly one of them. Justify your answer. [13]
Solution Define the function f : R → R thus:

f(x) =

{
x2 if x is rational
x3 if x is irrational

[5 mks]

We show that f is continuous only at 0 and 1, and differentiable only at 0. For this,
consider a real number a. Then as x→ a through rational values, f(x) = x2 → a2, and
as x→ a through irrational values, f(x) = x3 → a3. So the limit limx→a f(x) will exist
if and only if the above two limits are equal i.e. if and only if a2 = a3 i.e. a2(a− 1) = 0
i.e. a = 0 or a = 1. Thus f is continuous at 0 since lim f(x) = limx2 = 0 = f(0).
Similarly, f is continuous at 1. But when a 6= 0, 1, limx→a f(x) does not exist; so f is
discontinuous at a. [4 mks]

Next, let g(x) = [f(x)− f(a)]/(x− a). Let a be rational. As x→ a through irrational
values, lim g(x) = lim{[x3 − a2]/(x− a)} is not finite if lim[x3 − a2] 6= 0 i.e. if a3 6= a2

i.e. if a 6∈ {0, 1}. Hence f ′(a) does not exist (finitely) if a 6∈ {0, 1}. Let a = 0. Then
limx→0 g(x) = limx→0[f(x)/x] = 0. So f ′(0) exists and is 0.

But as x → 1 through rational values, lim g(x) =
x2 − 1
x− 1

= 2, while as x → 1 through

irrational values, lim g(x) = lim
x3 − 1
x− 1

= 3. Hence f ′(1) does not exist.

Let a be irrational. As x→ a through rational values,

lim g(x) = lim{[x2 − a3]/(x− a)}

is not finite if lim[x2 − a3] 6= 0 i.e. if a2 6= a3 i.e. if a 6∈ {0, 1}. Hence f ′(a) does not
exist. [4 mks]

3. Let A be any m × n matrix whose entries are positive inegers. A step consists of
transforming the matrix either by multiplying every entry of a row by 2 or subtracting
1 from every entry of a column. Can you transform A into the zero matrix in finitely
many steps? Justify your answer. [12]

Solution Yes, one method is as follows: Let A = [aij ] be the matrix. Let m be
the minimum element in the first column C1. In fact, let m occur s times i.e. let
m = ai11 = · · · = ais1. We may assume that m = 1. For if m ≥ 2, subtract 1 from each
element of C1 m− 1 times so that the minimum element in C1 is 1. [4 mks]

Multiply each of the s rows i1, i2, . . . , is of A by 2. This forces the minimum element in
C1 to be 2. Subtract 1 from each element of C1. The effect of these steps on C1 is this:
the s elements ai11, ai21, . . . , ais1 of C1 are still equal to 1, but the remaining elements
of C1 have all become smaller though they are all still ≥ 1. Hence in a finite number
of steps all elements of C1 will become 1. Then subtracting 1 from each element of C1

makes C1 a column of zeros.

7



Next make the second column C2 a column of zeros as in the above. Note that the
operations on C2 have no effect on C1 and C1 remains a column of zeros. Hence in a
finite number of steps A becomes the zero matrix. [8 mks]

4. Let S be the set of positive integers that do not have zero in their decimal representation.
Thus S = {1, 2, 3, · · · , 9, 11, 12, · · · , 19, 21, · · · , 99, 111, · · · }.
Show that the series

∑
n∈S

1
n

converges. [12]

Solution: Let A denote the series
∑
n∈S

1
n
. Let t1 denote the sum of the first 9 terms of

A, namely 1, 1
2 ,

1
3 , . . . ,

1
9 . Then t1 < 9 since each of these 9 terms is ≤ 1. [2 mks]

Next, let t2 denote the sum of the next 81 = 92 terms of A, namely

1
11
,

1
12
, . . . ,

1
19
,

1
21
,

1
22
, . . . ,

1
29
,

. . . . . . . . .

1
91
,

1
92
, . . . ,

1
99
. [3 mks]

Then t2 < 1
10 · 9

2 since each of these 92 terms is ≤ 1
11 <

1
10 .

Similarly, let t3 denote the sum of the next 729 = 93 terms of A, namely

1
111

,
1

112
, . . . ,

1
119

,

1
221

,
1

222
, . . . ,

1
229

,

. . . . . . . . .

1
991

,
1

992
, . . . ,

1
999

. [3 mks]

Then t3 < 1
102 · 93 since each of these 93 terms is ≤ 1

111 <
1

100 .

Proceeding in this way, if sn is the sum of the first n terms of A, we take m to be the
smallest positive integer such that n ≤ 9 + 92 + · · ·+ 9m = 9(9m− 1)/8 = N, say. Then
since the terms are positive and since the first n terms of A are included in the first N
terms of A, we see that

sn < sN = 9 +
1
10
· 92 +

1
102

· 93 + · · ·+ 1
10m−1

· 9m

= 9

[
1 +

9
10

+
(

9
10

)2

+ · · ·+
(

9
10

)m−1
]

= 9 · 1− (9/10)m

1− (9/10)
< 90.

So the partial sums of the positive term series A are bounded above. Hence series A is
convergent. [4 mks]
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