MADHAVA MATHEMATICS COMPETITION, January 4, 2015

Part 1
N.B. Each question in Part I carries 2 marks.

1. How many five digit positive integers that are divisible by 3 can be formed using the digits
0,1,2,3,4 and 5, without any of the digits getting repeated?
A) 216 B) 96 C) 120 D) 625 .

Answer: A) Numbers of the form abede with distinct digits from the set {0,1,2,3,4,5}
such that @ # 0 and 3 | (a + b+ ¢+ d+ e). Since 3|(1 + --- 4+ 5) = 15, there are 5! = 120
such numbers with no digit zero. If 0 is included, then 3 must be excluded; so for a = 1, 4!
numbers like 10245; for a = 2, 4! numbers like 20145; for a = 4, 4! numbers like 40245; for
a = 5, 4! numbers like 50124. So 120 + 96 = 216 in all.

1
2. IfI:/ L dx, then
0 1+£L‘8
1
AT < 3 B)I<% c>1>% D)I:%.
Answer: C) Notethat 0 <z <1= 2% <2?=1+2% <1422 =1/(1+2%) > 1/(1+2?).
So I > fol 1/(1 + 2?)dx = /4.

3. Find a and b so that y = ax + b is a tangent line to the curve y = 22 + 3z + 2 at = = 3.
A)a=9b=-7 B)a=3b=-2 C)a=-90=7 D)a=-3,b=2.

Answer: A) Since for f(z) = 2% + 3z + 2, f/(x) = 2z + 3, the tangent at z = 3 is
y—fB)=f3)(r—3)ie y—20=9(x—3)ory =9z — 7.

4. Suppose p is a prime number. The possible values of ged of p? 4+ p? +p+ 11 and p? + 1 are
A) 1,25 B) 2,5,10 C) 1,5,10 D) 1,2,10.

Answer: B) Leta=p®+p>+p+ 11, b= p?>+ 1, and d = ged of a and b. Then since

a="b(p+1)+ 10, d divides 10. So d =1,2,5 or 10. But for p = 2, we get d =5 and for odd

p, both a,b are even, hence d is even. So d # 1.

5. Consider all 2 x 2 matrices whose entries are distinct and belong to {1,2,3,4}. The sum
of determinants of all such matrices is
A) 4! B)0 C) negative D) odd.

Answer: B) There are in all 4! = 24 matrices. These can be taken in pairs like A = (‘é 2)
and B = ( ¢ ‘g) where B is obtained by interchanging the rows of A; so det A = —det B or
det A+ det B = 0.

6. Choose the correct alternative:

1 2
A) The Taylor series of sin — about x = — does not exist.
T

2\ 1 2
B) The coefficient of (x — ) in the Taylor series of sin — about z = — is
™ x

C) The Taylor series of sin — about = — has negative powers of x.
w

2\ 1 2
D) The coefficient of (:): - ) in the Taylor series of sin — about = — is 0.
T x u

Answer: B) For f(z) = sin(1/z), f'(z) = —(1/2%) cos(1/x) and f"(z) = (2/23) cos(1/z)—



(1/2*)sin(1/z). So f(2/m) =1, f'(2/7) =0, and f"(2/m) = —7*/16. So the Taylor series is

flx) = f(2/m) + f'(2/m)(x —2/m) + %f”@/ﬂ)(w —2/m)? 4

:1+;[17T64] (x—2/m)% +---.

7. Consider all right circular cylinders for which the sum of the height and circumference of
the base is 30 cm. The radius of the one with maximum volume is

1
A)3 B) 10 o) 10 D) 7.
T

Answer: C) Let z and h be the radius of base and height of a cylinder. Then the
circumference is 27z +h. So 27z +h = 30 by data. So the volume is v(x) = mx?h = 72%(30 —
2rx) = 27(152% — 72?). So v/(z) = 27(30x — 372?), v"(x) = 27(30 — 67x). Now v'(x) = 0
gives x = 10/7 as the only non-zero critical value of x and v”(10/7) = 27(30 — 60) < 0. So v
is maximum at z = 10/7.

8. In how many ways can you express 223°577!1 as a product of two numbers, ab, where
ged(a,b) =1and 1 < a < b?

A)5 B) 6 C)7 D) 8.
Answer: C) Letx =23 y=23% 2=5", w= 7" Then the 7 ways are (z)(yzw), (y)(zzw)
(2)(zyw), (w)(zyz); (zy)(zw), (x2)(yw), (yz)(zw).

b
9. The value of / sinz dx is
a

sinc cosc

D
b—a )b—a

A) (b—a)sinc B) (b—a)cosc C)
for some real number ¢ such that a < ¢ <b.

Answer: A) Since the function f(z) = sinz is continuous in [a,b], by the mean-value
theorem there is ¢ € [a, b] such that the integral = (b — a)f(c).

10. Suppose a, b, ¢ are three distinct integers from 2 to 10 (both inclusive). Exactly one of

ab, bc and ca is odd and abc is a multiple of 4. The arithmetic mean of a and b is an integer

and so is the arithmetic mean of a, b and ¢. How many such (unordered ) triplets are possible?
A) 4 B)5 C)6 D) 7.

Answer: A) Since exactly one of ab, bc and ca is odd and 4|abe, two of the numbers must
be odd and the remaining must be a multiple of 4. Since the A.M., (a + b)/2, of a,b is an
integer, 2|(a + b) so that a,b have the same parity so that both are odd by the above. Since
the A M., (a+b+c¢)/3, of a,b, ¢ is an integer, 3|(a+ b+ ¢). So the only triplets are (a,b, c) =
(3,5,4); (3,7,8); (5,9,4) and (7,9,8).

Part I1
N.B. Each question in Part II carries 6 marks.

n

1. Let P(x) = Z ¢y’ be a polynomial with real coefficients with ¢o > 0 and

r=0
/2
Z 2" _ < 0. Prove that P has root in (—1,1).
= 2r+1



Solution : P(0) = ¢y > 0. [1 mK]

Note that
1 0 1
= /_1 P(z)dz = /_1 P(x)da:+/0 P(z)dz (Put x = —t)

/ dt) + /P
—/TP( ¥) + P(a))dr

1[n/2] [n/2]

— 2r
_2/ ZCQTI‘ dx—222r+1 [3 mks]

[n/2]
By data, Z 2 < 0, so that I < 0. Now P is a continuous function on [—1, 1] and
= 2r+1

its integral I over [—1,1] is negative. Hence there is k € [—1,1] such that P(k) < 0.
(Recall: If f is a continuous function on [a, b] (a < b) such that f(x) > 0 for all z € [a, b],
then ff f(x)dx > 0.) Also, P(0) = ¢y > 0. Therefore, since P is a continuous function

n [—1, 1], there is a number a between k and 0 such that P(a) = 0. [2 mks]

. If |z1] = |22] = |23] > 0 and 21 + 22 + 23 = 0, then show that the points representing
the complex numbers z1, 29, z3 form an equilateral triangle.
Solution: There are unique numbers 61, 02,03 in [0, 27) such that

2z =r(cosly +isinby), k=1,2,3, (1)

where r = |z1| = |22] = |23]. Then if A, B, C are the points represented by the numbers
21, 22, 23 respectively, then they lie on the circle |z| = r with origin O as its centre. The
condition z7 + 29 + 23 = 0 gives

r[(cos 01 + cos 02 + cos 03) 4 i(sin 01 + sin Oz + sin f3)] = 0. [1 mk]

As r > 0, this gives cos 81 + cos s + cosf3 = 0 and sin #1 + sin 6 + sin 63 = 0. Hence
cos 1 + cosflp = —cosfl3, sinfq + sinfy = — sin O3. [2 mks]
Squaring and adding we get 1 4+ 1 — 2(cos 61 cos 3 + sinf sinfy) = 1 or cos(fy — 01) =

—1/2. So ZAOB = 03 — 61 = 2x/3. Similarly Z/BOC = ZCOA = 27/3. Hence the
chords AB, BC,C'A subtend the same angle, 27/3, at the centre and so AB = BC =

CA. So AABC is equilateral. [3 mks]
CIf 1,00, a0, -, ap_1 are n'™ roots of unity, prove that
LS SRR SR (n—2)2"t+1
2—a1 2-a 2—ap-1 2n — 1 '
Solution: First method: Let f(z) = 2™ — 1 so that ap = 1,19, g, ..., a,—1 are the
n roots of f(z) =0 and of these oy, a9, ..., a,—1 are non-real for n > 3. For a fixed r,



0 <r <n-—1, we have the identity

" =1 2" —al

T — o T — o

T R T 1Y

Putting x = 2 and summing over r we get

r=0
=327 42y a4 2) ol P4 ar (1)
T T T T

Now the nth roots of unity are «, = e@mr/n . — 0.1,...,n — 1. Thus o, = of,
r=20,1,...,n—1. For a fixed j, 1 < j <n—1, we have

n—1 ' n—1 4 n—1 1— (aj)n

J — ™ — I\ — —
> ot =3 ey = Tty = 3 ]
r= r= r=

since (a{)” = (a})? = 17 = 1. So substituting in (1) we have

n—1

— 1
2" —1 =n2"
@ =1 > 5= =n
r=0
n—1
1 n2n1
or 1+Z?_Oér:2"—1 (as ap = 1)
r=1
"il 1 n2 !t (n-2)2n 2 k]
T = — = . m
R T T on — 1 i
Second method: Let f(x) = 2™ — 1 so that ag = 1,1, a9, ...,a,_1 are the n roots
of f(x) = 0. Hence we have the identity
fl@)=(z—ap)(z—a1)(x—az) - (z — ap_1). [2 mks]
Taking logarithm on both the sides and differentiating we get the identity
nz"t 1 1 1 1
= + - b ———,
" -1 T—ay T—a1 T—Qo T — Qp—1
for x different from all the «;. So putting = = 2 we get,
1+1+1++1 nznfl(l)
e = , o =
2—ap  2—a1  2—ay 2=y 20— 1 0
1 1 1 n2n1 (n—2)2" "1 +1
- —1= . 4 mk
2—a1+2—0z2+ +2_O‘n71 an 1 am _ 1 [ IIIS]



4. Let f(x) be a monic polynomial of degree 4 such that f(1) = 10, f(2) = 20, f(3) = 30.
Find f(12) + f(—8).
Solution: First method: Note that f(1) = 10 means that the remainder is 10 when
f(z) is divided by z — 1. Similarly, the remainder is 10 x 2 when f(z) is divided by
x — 2 and the remainder is 10 x 3 when f(z) is divided by x — 3. Hence we can take
the degree 4 monic polynomial f(z) to be f(z) = (x — 1)(z — 2)(z — 3)(z — k) + 10z,
where k is a parameter. Then [4 mks]
f(12) =11-10-9(12 — k) + 120 = 990(12 — k) + 120,
f(—=8) = (-9)(—10)(—11)(—8 — k) — 80 = —990(—8 — k) — 80.

Adding, £(12) + f(—8) = 990(12 — k + 8 + k) -+ 40 = 990(20) + 40 = 19840.  [2 mks]

Second method: Let f(z) = z* + az® 4 bz? + cx + d so that by the data we have the
equations

1+a+b+c+d=10,
16 + 8a + 4b + 2¢ + d = 20,
81+ 27a+ 9b+ 3c+ d = 30. [2 mks]

Reducing this system we get

a+b+c+d=09,
36b + 5dc + 63d = 612,

6c + 11d = 24.
Solving, we get ¢ = 4 — %d, b=11+d,a=—6— %d. So [3 mks]
1 11
f(z) =2+ (-6 — gd)x?’ + (11 + d)z* + (4 — Eal)az: +d
4 3 2 1 4 o 11
=" —6x°+ 11z +4x + d —Ex +x —gx—i—l .
Hence f(12) 4+ f(—8) = 12000 — 165d + 7840 + 165d = 19840. [1 mk]

5. Find all solutions (a, b, c,n) in positve integers for the equation 2" = a! + bl + cl.
Solution: Let a < b <¢. Then N =1+ % + Z—', is an integer since % and 2—', are both
integers. Therefore, since 2™ = a! - N, we see that a! divides 2" so that we must have

a=1ora=2.

Let a = 1. Then 2" — 1 = b! 4 ¢! where left side is odd. So exactly one of b! and ¢!
must be odd. But k! is odd only when k = 1. Therefore b = 1 since 1 < b < ¢. So
2" — 2 = ¢l or 2(2"! — 1) = ¢! and left side is not divisible by 4. So ¢ < 3, and
(a,b,c,n) =(1,1,2,2),(1,1, 3,3) are the corresponding solutions. [4 mks]
Let a = 2. Then 2 < b < cand 2(2" 1 —1) = bl(1+ §). So as before, b = 2,3. Let b = 2.
Then 2 < ¢ and 4(2"2 — 1) = ¢! which is not possible as 8 divides ¢! for ¢ > 4 and 4
does not divide 2! and 3!. Let b = 3. Then 3 < cand 8(2" 3 —1) =c!sothat 4 <c <5
as 16 divides ¢! for ¢ > 6. Here (a,b,¢,n) = (2,3,4,5),(2,3,5,7) are the corresponding
solutions.

Thus the only possibilities are 22 = 1! 41! 42!, 23 = 11 + 11 + 3!, 25 = 21 + 3! + 4! and
27 =20+ 31+ 5. [2 mks]



Part II1

1. Suppose the polynomials f and g have the same roots and {x € C : f(z) = 2015} =

{zr € C : g(x) =2015}, then show that f = g. [13]
Solution: The polynomials f and g have the same roots. Let these roots be aq, ..., ay,
and let the multiplicities of these be ay,...,a, for f and by,...,b, for g respectively.

Then the degree of f is Ny = a1 + -+ + a, and the degree of g is No = by + - -+ + by,
and we have

F@) = (@ — o)™ (& — a2) - (& — ),

g(z) = (x — )" (z — a)” - (x — an)"",
where Nj > Na, say. (1)
[2 mks]
Next, by data the polynomials F(z) = f(z)—2015 and G(x) = g(x) —2015 also have the
same roots, say [1,...,Bm. Let their multiplicities be a},...,a,, for F and b},... b,
for G respectively. Then degree of F' = degree of f = Ny =a} +--- + a, and degree

of G = degree of g = Ny =1} + --- + b}, and we have

F(z) = (z = B1)" (x = B2)"2 - (& — Bpn) ™,
Gla) = (o~ Al — )% - — ).
Note that the sets S = {ai,...,an} and T = {f1,...,Bn} are disjoint.

Let, if possible, f # g i.e. let f — g be a non-zero polynomial. Then as aq,...,a, are
roots of both f and g, they are roots of f — g also. Similarly, 51, ..., 3, are roots of
F — G = f — g. Therefore, since the sets S, T are disjoint, we have

f=g=@—a) - (@—an)(x—=P1) (&= On)H(z), [5 mks]

for some polynomial H(x). Hence f — g is a non-constant polynomial of degree say K,
and

K>n+m. (2)

To obtain a contradiction we consider the multiplicities of the roots of the derivative
1. Now a1 is a root of f with multiplicity a; means that

f(@) = (& — 1) o()

where ¢(ay) # 0. This gives f/(z) = a1(x — 1) Lo(x) + (2 — a1)® ¢ (). So f'(z) =
(x — aq)®1p(x) where ¥(z) = a1¢(x) + (z — a1)¢'(z). Therefore, since ¥(ay) =
a1¢(aq) # 0, we see that aq is a root of f' with multiplicity a; — 1. Thus ay, ..., «, are
roots of f’ with multiplicities a1 — 1, ..., a, — 1. Similarly, since f' = F’, it follows that
B1,- .., Bm are also roots of f’ with multiplicities aj — 1,...,a], — 1. Hence the degree
of f/ namely, N7 — 1, is such that

n
Nl—lZZ(ai—l)—FZ(a;—l):Nl—n+N1—
— =

or n+m—12>Nj. (3)



By (1), the degree K of f — g satisfies K < Nj. So by (2) and (3), we get n+m < K <
Ni<n+m-—1orn+m<n+m— 1, contradiction. So f = g. [6 mks]

. Give an example of a function which is continuous at exactly two points and differen-

tiable at exactly one of them. Justify your answer. [13]
Solution Define the function f : R — R thus:
2 . . .
x® if x is rational
flay=9 "4 . . [5 mks]
x° if x is irrational

We show that f is continuous only at 0 and 1, and differentiable only at 0. For this,
consider a real number a. Then as x — a through rational values, f(z) = 2?
as  — a through irrational values, f(z) = 23 — a3. So the limit lim, ., f(z) will exist
if and only if the above two limits are equal i.e. if and only if a® = a® i.e. a?(a—1) =0
ie. @ =0or a=1 Thus f is continuous at 0 since lim f(z) = limz? = 0 = f(0).
Similarly, f is continuous at 1. But when a # 0,1, lim,_,, f(x) does not exist; so f is
discontinuous at a. [4 mks]

Next, let g(x) = [f(z) — f(a)]/(z — a). Let a be rational. As x — a through irrational
values, lim g(x) = lim{[z3 — a?]/(x — a)} is not finite if lim[z® — a?] # 0 i.e. if a® # a?
ie. if a € {0,1}. Hence f'(a) does not exist (finitely) if a ¢ {0,1}. Let a = 0. Then
lim, 0 g(z) = lim,—o[f(z)/x] = 0. So f'(0) exists and is 0.

— a2, and

2
-1
But as # — 1 through rational values, lim g(z) = a: = 2, while as  — 1 through
x J—
31
irrational values, lim g(x) = lim z .= 3. Hence f’(1) does not exist.
':U p—

Let a be irrational. As x — a through rational values,
lim g(z) = lim{[z* — a3]/(z — a)}

is not finite if lim[z? — a®] # 0 i.e. if a® # a3 ie. if a € {0,1}. Hence f’(a) does not
exist. [4 mks]

. Let A be any m x m matrix whose entries are positive inegers. A step consists of
transforming the matrix either by multiplying every entry of a row by 2 or subtracting
1 from every entry of a column. Can you transform A into the zero matrix in finitely
many steps? Justify your answer. [12]

Solution Yes, one method is as follows: Let A = [a;;] be the matrix. Let m be
the minimum element in the first column Cy. In fact, let m occur s times i.e. let
m = a1 =--- = a;,1. We may assume that m = 1. For if m > 2, subtract 1 from each
element of C; m — 1 times so that the minimum element in Cj is 1. [4 mks]

Multiply each of the s rows i1,19,...,is of A by 2. This forces the minimum element in
C to be 2. Subtract 1 from each element of C. The effect of these steps on (' is this:
the s elements a;,1, aj,1,...,a;,1 of Cp are still equal to 1, but the remaining elements
of C have all become smaller though they are all still > 1. Hence in a finite number
of steps all elements of C] will become 1. Then subtracting 1 from each element of C
makes C7 a column of zeros.



Next make the second column C9 a column of zeros as in the above. Note that the
operations on C5 have no effect on Cy and Cy remains a column of zeros. Hence in a
finite number of steps A becomes the zero matrix. [8 mks]

. Let S be the set of positive integers that do not have zero in their decimal representation.
Thus S ={1,2,3,---,9,11,12,--- ,19,21,--- ,99,111,--- }.

1
Show that the series Z — converges. [12]
nes "

1
Solution: Let A denote the series Z —. Let ¢; denote the sum of the first 9 terms of
n

nes
A, namely 1, %, %, e %. Then t; < 9 since each of these 9 terms is < 1. [2 mks]
Next, let to denote the sum of the next 81 = 92 terms of A, namely
1 1 1
1171277719’
1 1 1
21722777729’
1 1 1
— ., —. 3 mk
91 92" 99 [3 mks]
Then t9 < % - 92 since each of these 92 terms is < 1—11 < %.
Similarly, let t3 denote the sum of the next 729 = 93 terms of A, namely
L1
111711277777 119’
1 1 1
2217222777229’
1 1 1
[3 mks]

991°992° "7 999"

Then t3 < # - 93 since each of these 93 terms is < 1%1 < ﬁ.

Proceeding in this way, if s, is the sum of the first n terms of A, we take m to be the
smallest positive integer such that n < 9+92+---4+9™ = 9(9™ —1)/8 = N, say. Then
since the terms are positive and since the first n terms of A are included in the first N

terms of A, we see that

1 1 1
S <SN=9+— -9+ _— .93 4.4~ _.9gm

10 102 10m—1
9 9 2 9 m—1
—9l1+ = = -
) +10+<10> * +<1o> ]
1 (9/10)™
=9 ——————— < 90.
1-(9/10)

So the partial sums of the positive term series A are bounded above. Hence series A is
convergent. [4 mks]




