
Madhava Mathematics Competition January 6, 2013

Solutions and scheme of marking

Part I

N.B. Each question in Part I carries 2 marks.

1. If p(x) is a non-constant polynomial, then lim
k→∞

p(k + 1)

p(k)
is equal to

(a) 1 (b) 0 (c) −1 (d) the leading coefficient of p(x).

Solution: (a)

It is sufficient to find the limit in case of p(x) = ax+ b.

lim
k→∞

p(k + 1)

p(k)
= 1.

2. The number of continuous functions f from [−1, 1] to R satisfying (f(x))2 = x2 for all

x ∈ [−1, 1] is

(a) 2 (b) 3 (c) 4 (d) infinite.

Solution: (c)

The expression (f(x))2 = x2 implies f(x) = ±x or f(x) = ±|x|.

3. Let q ∈ N. The number of elements in set {(cos
π

q
+ i sin

π

q
)n | n ∈ N} is

(a) 1 (b) q (c) infinite (d) 2q.

Solution: (d)

The number of elements in the given set is equal to the number of qth roots of {cosnπ+

i sinnπ | n ∈ N} = {±1} which are 2q in number since the qth roots of 1 are distinct

from the qth roots of −1.

4. If f(x) = |x|
3
2 , ∀x ∈ R, then at x = 0,

(a) f is not continuous (b) f is continuous but not differentiable (c) f is differentiable

but f ′ is not continuous (d) f is differentiable and f ′ is continuous.

Solution: (d)

f ′(x) =
3

2

√
x, if x > 0

= −3

2

√
|x|, if x < 0

f ′(0) = lim
h→0

|h|
3
2

h
= 0.

Therefore f ′ exists and is continuous at 0.

5. If α1, α2, α3, α4 are roots of the equation x4 + x3 + 1 = 0, then the value of

(1− 2α1)(1− 2α2)(1− 2α3)(1− 2α4) is equal to

(a) 19 (b) 16 (c) 15 (d) 20.

Solution: (a)

(1 − 2α1)(1 − 2α2)(1 − 2α3)(1 − 2α4) = 1 − 2
∑

αi + 4
∑

αiαj − 8
∑

αiαjαk +

16α1α2α3α4 = 1− 2(−1) + 4(0)− 8(0) + 16(1) = 19.

6. If A and B are 3× 3 real matrices with rank (AB) = 1, then rank (BA) cannot be

(a) 0 (b) 1 (c) 2 (d) 3.

Solution: (d)

If the rank of BA is 3, then the determinant of BA is nonzero. Then the determinant

of AB is nonzero and hence the matrix AB is also invertible, which is not possible.
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7. The number of common solutions of x36 − 1 = 0 and x24 − 1 = 0 in the set of complex

numbers is

(a) 1 (b) 2 (c) 6 (d) 12.

Solution: (d)

The number of common solutions of x36 − 1 = 0 and x24 − 1 = 0 in the set of complex

numbers is the gcd(36, 24) = 12.

8. If f is a one to one function from [0, 1] to [0, 1], then

(a) f must be onto (b) f cannot be onto (c) f([0, 1]) must contain a rational number

(d) f([0, 1]) must contain an irrational number.

Solution: (d)

Because f is one to one, f([0, 1]) and [0, 1] are equivalent sets. Also f([0, 1]) ⊆ [0, 1].

Now [0, 1] is uncountable and the set of rational numbers is countable. Hence f([0, 1])

must contain an irrational number.

9. There are 18 ways in which n identical balls can be grouped such that each group

contains equal number of balls. Then the minimum value of n is

(a) 120 (b) 180 (c) 160 (d) 90.

Solution: (b)

The total number of required ways= the total number of factors of n.

180 = 22 × 32 × 5. Therefore the total number of factors of 180 is 3× 3× 2 = 18.

10. Suppose f and g are two linear functions as shown in the figure. Then lim
x→b

f(x)

g(x)

(a) is 2 (b) does not exist (c) is 3 (d) is
1

2
.

Solution: (a)

By L′ Hospital Rule,

lim
x→b

f(x)

g(x)
= lim

x→b

f ′(x)

g′(x)
=

6

3
= 2.

Part II

N.B. Each question in Part II carries 5 marks. Attempt any FOUR:

(a) Let A = (aij) be n× n matrix, where aij = max{i, j}. Find the determinant of A.

Solution: Let aij = max{i, j}.

A =



1 2 3 4 . . . n

2 2 3 4 . . . n

3 3 3 4 . . . n
...

. . .
. . .

. . .
...

n n n n . . . n


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Performing the operations Rn −Rn−1, Rn−1 −Rn−2, · · · , R2 −R1 on A we get

A =



1 2 3 4 . . . n

1 0 0 0 . . . 0

1 1 0 0 . . . 0
...

. . .
. . .

. . .
...

1 1 1 1 . . . 0


. [1]

Hence the determinant of A is (−1)n+1n.

(b) Assume that f is a continuous function from [0, 2] to R and f(0) = f(2). Prove

that there exist x1 and x2 in [0, 2] such that x2 − x1 = 1 and f(x2) = f(x1).

Solution: Define g(x) = f(x+ 1)− f(x) for x ∈ [0, 1].

Note that g(1) = f(2)− f(1) and g(0) = f(1)− f(0) = −g(1).

Hence by Intermediate Value Property, there exists x0 ∈ [0, 1] such that g(x0) = 0.

Therefore f(x0 + 1) = f(x0).

(c) Let X = {1, 2, 3, · · · , 10}. Determine the number of ways of expressing X as

X = A1 ∪A2 ∪A3, where A1, A2, A3 ⊆ X and A1 ∩A2 ∩A3 = φ.

Solution: Each number from the set X has 6 choices as shown in the figure.

Therefore the total number of required ways is 610.

(d) For non-negative real numbers a1, a2, · · · , an, show that
1

n

n∑
k=1

ake
−ak ≤ 1

e
.

Solution: Let f(x) = xe−x for x ≥ 0.

Then f ′(x) = e−x − xe−x = 0 implies e−x(1− x) = 0. Therefore x = 1 is the only

critical point. Note that f ′′(1) = −1

e
< 0.

Hence f(1) =
1

e
is the maximum value of f.

Therefore
1

n

n∑
k=1

ake
−ak ≤ 1

n
n

1

e
=

1

e
.

(e) Let A be a non-zero 1× n real matrix. Then show that the rank of AtA is 1.

[Note that At denotes the transpose of the matrix A.]

Solution: Let A =
(
a1 a2 · · · an

)
. Then

AtA =


a1

a2
...

an


(
a1 a2 · · · an

)
=


a21 a1a2 · · · a1an

a2a1 a22 · · · a2an
...

. . .
. . .

...

ana1 ana2 · · · a2n

.

Without loss of generality we can assume that a1 6= 0. Performing row operations

R2 → R2 −
a2
a1
R1, R3 → R3 −

a3
a1
R1, · · · , Rn → Rn − an

a1
R1, we obtain
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AtA =


a21 a1a2 · · · a1an

0 0 · · · 0
...

. . .
. . .

...

0 0 · · · 0

.

Hence the rank of AtA is 1.

Part III

N.B. Each question in Part III carries 12 marks. Attempt any FIVE:

(a) Let f(x) =
(x− a)(x− b)

(x− c)
, x 6= c.

Find the range of f in each of the following cases:

i] a < c < b ii] c < a < b.

Solution: Let f(x) =
(x− a)(x− b)

(x− c)
= y.

Therefore (x− a)(x− b) = y(x− c).
Therefore x2 − (a+ b+ y)x+ (ab+ yc) = 0.

This quadratic equation has solution x =
(a+ b+ y)±

√
(a+ b+ y)2 − 4(ab+ yc)

2
.

This x is real if and only if the term in the square root is non-negative.

Therefore we need (a+ b+ y)2 − 4(ab+ yc) ≥ 0.

Therefore a2 + b2 + y2 + 2ab+ 2by + 2ay − 4ab− 4yc ≥ 0.

Therefore y2 + 2(a+ b− 2c)y + (a+ b− 2c)2 + (a− b)2 − (a+ b− 2c)2 ≥ 0.

Therefore [y + (a+ b− 2c)]2 ≥ (a+ b− 2c)2 − (a− b)2.
Simplifying this we get, [y + (a+ b− 2c)]2 ≥ 4(c− b)(c− a).

i] If a < c < b, then the product (c− b)(c−a) is negative and the above inequality

is true for all real values of y. Hence the range of f is R.
ii] If c < a < b, then the product (c− b)(c− a) is positive.

We have y+(a+b−2c) ≥ 2
√

(c− b)(c− a) or y+(a+b−2c) ≤ −2
√

(c− b)(c− a).

Therefore y ≥ (2c−a−b)+2
√

(c− b)(c− a) or y ≤ (2c−a−b)−2
√

(c− b)(c− a).

Hence the range of f is

(−∞, (2c− a− b)− 2
√

(c− b)(c− a)] ∪ [(2c− a− b) + 2
√

(c− b)(c− a),∞)

(b) The horizontal line y = c intersects the curve y = 2x − 3x3 in the first quadrant

as in the figure. Find c so that the areas of the two shaded regions are equal.

Solution: Suppose A(a, c) and B(b, c) are the points on the curve as shown in

the figure. Therefore they satisfy c = 2a− 3a3 = 2b− 3b3.

The areas of the two shaded regions are equal if

ca−
∫ a

0
(2x− 3x3) dx =

∫ b

a
(2x− 3x3) dx− c(b− a).
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Therefore ca− [x2 − 3
x4

4
]a0 = [x2 − 3

x4

4
]ba − cb+ ca

Therefore ca− a2 + 3
a4

4
= b2 − 3

b4

4
− a2 + 3

a4

4
− cb+ ca.

Therefore b2 − 3
b4

4
− bc = 0.

Substituting the value of c we get, b2 − 3 b4

4 − b(2b− 3b3) = 0.

Therefore b2 − 3
b4

4
− 2b2 + 3b4 = 0.

Therefore
9

4
b4 = b2.

Hence cancelling b2 from both sides we get, b2 =
4

9
.

Therefore b =
2

3
.

Substituting the value of b in the expression c = 2b− 3b3 we get, c =
4

9
.

(c) Suppose A1, A2, · · · , An are vertices of a regular n-gon inscribed in a unit circle

and P is any point on the unit circle. Prove that

n∑
i=1

l(PAi)
2 is constant, where

l(PAi) denotes the distance between P and Ai. [Hint: Use complex numbers.]

Solution: Here n ≥ 3. Let z1, z2, · · · , zn be the roots of unity.

Therefore
n∑

k=1

zk = 0.

n∑
i=1

l(PAi)
2 =

n∑
k=1

|z − zk|2 =
n∑

k=1

(z − zk)(z − zk) =
n∑

k=1

(z − zk)(z − zk) =

n∑
k=1

|z|2 −
n∑

k=1

zzk −
n∑

k=1

zkz +

n∑
k=1

|zk|2 = n+ n = 2n.

(d) A unit square of a chess board of size n × n gets infected if at least two of its

neighbours are infected. Find the maximum number of infected unit squares if

initially [i] 2 unit squares are infected, [ii] 3 unit squares are infected. Find the

minimum number of unit squares that should be infected initially so that the whole

chess board gets infected.

(Two unit squares are called neighbours if they share a common edge.)

Solution: If initially 2 unit squares are infected, then the maximum number of

infected unit squares is 4.

If initially 3 unit squares are infected, then the maximum number of infected unit

squares is 9.

Observe that n diagonal infected squares can infect the whole chess board. Hence

n are enough to infect the entire board.

To show that n are needed we observe that total perimeter of the infected region

can not increase as the virus spreads over the board. When a new square is infected

at least two of its boundary edges are absorbed into the infected region and at

the most two boundary edges are added to it. Therefore if there are less than n

squares that are initially infected the total perimeter of the infected region will be

less than 4n initially and it will remain less than 4n as the virus spreads. Hence
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the entire board with the perimeter 4n will never be entirely infected.

(e) Let a, b, c be integers. Let x =
p

q
, y =

r

s
be rational numbers satisfying

y2 = x3 +ax2 + bx+ c. Show that there exists an integer t such that q = t2, s = t3.

Solution: Let x =
p

q
, y =

r

s
be the rational solutions of y2 = x3 + ax2 + bx + c

where (p, q) = 1 = (r, s), q > 0, s > 0.

Substituting the values of x and y, we get

r2

s2
=
p3

q3
+
ap2

q2
+
bp

q
+ c

This implies r2q3 = p3s2 + ap2qs2 + bpq2s2 + cq3s2 (*)

This implies q|p3s2. Therefore q|s2. (1)

So, q2|ap2qs2 implies q2|p3s2 by (*)

Hence q2|s2. Therefore q|s. (2)

So, q3|ap2qs2 and q3|bpq2s2.
By (*) q3|p3s2. Therefore q3|s2. (3)

Also (*) implies s2|r2q3. Therefore s2|q3. (4)

By (3) and (4), s2 = q3.

But by (2), q|s. Therefore s = qt for some t ∈ N.
So, s2 = q3 implies q2t2 = q3. Therefore q = t2 and s = qt = t3.

(f) Show that the polynomial pn(x) = 1 + x +
x2

2!
+ · · · + xn

n!
has no real root if n is

even and exactly one real root if n is odd.

Solution: Observe that p′n(x) = pn−1(x).

Note that p1(x) = 1 + x has exactly one real root x = −1.

Consider p2(x) = 1+x+
x2

2!
. The quadratic equation p2(x) = 0 i.e. x2+2x+2 = 0

has no real root.

Let p3(x) = 1 + x +
x2

2!
+
x3

3!
. This is polynomial of odd degree. Therefore it has

at least one real root. If p3(x) has two real roots a and b, then between a and

b, there is a root of p′3(x) = p2(x). But p2(x) has no real root. Hence p3(x) has

exactly one real root.

Let p3(a) = 0. Note that a is a negative real number. Observe that a is a critical

point of p4(x). Now p′′4(x) = p′3(x) = p2(x). Then p2(a) = p3(a)− a3

3!
= −a

3

3!
> 0.

Therefore p′′4(a) > 0. Hence p4(x) has minimum value at a.

Therefore p4(a) ≤ p4(x) for all x.

But p4(a) = p3(a) +
a4

4!
> 0. Therefore p4(x) > 0 for all x. Hence p4(x) has no real

root. Repeating the similar argument we can prove the result.
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