
MADHAVA MATHEMATICS COMPETITION, JANUARY 5, 2014 Part I
N.B. Each question in Part I carries 2 marks. [20]

1. If x3 − x+ 1 = a0 + a1(x− 2) + a2(x− 2)2 + a3(x− 2)3, then (a0, a1, a2, a3) equals

A. (1,−1, 0, 1) B. (7, 6, 10, 1) C. (7, 11, 12, 6) D. (7, 11, 6, 1)
Solution: (D)

Using Taylor series expansion for f(x) = x3 − x + 1 about x = 2, we get ar =
f (r)(2)
r!

. Then
a0 = 7, a1 = 11, a2 = 6, a3 = 1.

2. Suppose f(x) and g(x) are real-valued differentiable functions such that f ′(x) ≥ g′(x) for all x
in [0, 1]. Which of the following is necessarily true?

A. f(1) ≥ g(1) C. f(1)− g(1) ≥ f(0)− g(0)

B. f − g has no maximum on [0, 1] D. f + g is a non-decreasing function on [0, 1]
Solution: (C)
The condition f ′(x) − g′(x) ≥ 0 implies that f(x) − g(x) is an increasing function on [0, 1].
Therefore f(1)− g(1) ≥ f(0)− g(0).

3. The equation x4 + x2 − 1 = 0 has
A. two positive and two negative roots C. one positive, one negative and two non-real roots

B. all positive roots D. no real root
Solution: (C)
Put x2 = y. Then the equation becomes y2 + y − 1 = 0. Solving this equation, we get

x2 = y =
−1±

√
5

2
. When x2 =

−1 +
√

5
2

, we get two real values of x, one positive and other

negative. But no real x exists such that x2 =
−1−

√
5

2
. Hence The equation x4 + x2 − 1 = 0

has one positive, one negative and two non-real roots.

4. Let n be a natural number. Let A and B be n × n matrices. If A is invertible, then which of
the following is necessarily true?
A. rank(AB) < rank(B) C. rank(AB) = rank(B)

B. rank(AB) > rank(B) D. rank(AB) < rank(A)
Solution: (C)
Since A is invertible, it is product of elementary matrices. The matrix AB can be obtained from
B by performing elementary row transformations. Therefore rank(AB) = rank(B).

5. Let X be a set and A,B,C be its subsets. Which of the following is necessarily true?
A. A− (A−B) = B C. A− (B ∪ C) = (A−B) ∪ (A− C)

B. A− (B ∩ C) = (A−B) ∩ (A− C) D. B − (A−B) = B

Solution: (D)
Note that A−B = A ∩B′. Also, (A−B)′ = (A ∩B′)′ = A′ ∪B.
Hence B − (A−B) = B ∩ (A−B)′ = B ∩ (A′ ∪B) = (B ∩A′) ∪B = B.

6. For a real number x we let [x] denote the largest integer not exceeding x. For a natural number n,

let an = [n
√

2]
n . The limit lim

n→∞
an

A. equals 0 B. equals
[√

2
]

C. equals
√

2 D. does not exist
Solution: (C)
Note that (n

√
2)− 1 ≤

[
n
√

2
]
≤ n
√

2.

Therefore
√

2− 1
n
≤
[
n
√

2
]

n
≤
√

2. Taking limit as n→∞, we get The limit lim
n→∞

an =
√

2.



7. Let M be a two-digit natural number. Let N be the natural number whose digits are that of M
but are in the reverse order. Which of the following CANNOT be the sum of M and N?

A. 181 B. 165 C. 121 D. 154
Solution: (A)
If M = 10a1+a0, then N = 10a0+a1. Therefore M+N = 10(a0+a1)+(a0+a1) = (11)(a0+a1).
Hence M +N is divisible by 11, but 181 is not divisible by 11.

8. The value of lim
x→1

∫ x

1
et2dt

x2 − 1
is

A. 0 B. 1 C. e D. e/2
Solution: (D)

This limit is in the
0
0

form. Then by L’Hospital rule,

lim
x→1

∫ x

1
et2dt

x2 − 1
= lim

x→1

d
dx

∫ x

1
et2dt

2x
= lim

x→1

ex2

2x
=
e

2
.

9. Let n be any positive integer and 1 ≤ x1 < x2 < · · · < xn+1 ≤ 2n, where each xi is an integer.
Which of the following must be true?

(I) There is an i such that xi is a square of an integer.
(II) There is an i such that xi+1 = xi + 1.
(III) There is an i such that xi is prime.

A. I only B. II only C. I and II only D. II and III only
Solution: (B)
Let S2n = {1, 2, . . . , 2n}. If we choose the 6 integers 2, 3, 5, 6, 7, 8 from S10, then none of them is
a square. So (I) is false for n = 5. If we choose the 6 integers 1, 4, 6, 8, 9, 10 from S10, then none
of them is a prime. So (III) is false for n = 5.

Now (II) is clearly true for n = 2. Also, for n ≥ 2, suppose, if possible, n+ 1 integers xi can be
chosen such that

1 ≤ x1 < x2 < · · · < xn+1 ≤ 2n,

and such that no two of them differ by 1. Then x2 ≥ x1 + 2, x3 ≥ x2 + 2, ... xn+1 ≥ xn + 2.
Adding these, we get xn+1 ≥ x1 + 2n ≥ 2n + 1 > 2n. This contradicts the choice of xn+1. So
(II) is true for every n.

10. Two real numbers x and y are chosen uniformly at random from the interval [0, 1]. Find the
probability that 2x > y.

A. 1/4 B. 1/2 C. 2/3 D. 3/4
Solution: (D)
The probability that 2x > y is the area of the region in the unit square below the line 2x = y.

Thus the required probability is 3/4.

Part II
N.B. Each question in Part II carries 6 marks. [30]

1. Let A be an 8× 3 matrix in which every entry is either 1 or −1, and no two rows are identical.
Find the rank of A.

Solution: The given conditions imply that the rows of A must be the following triplets, in some
order.

(1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1),

(1,−1,−1), (−1, 1,−1), (−1,−1, 1), (−1,−1,−1).



To see this, let (a, b, c) be a triplet satisfying the given conditions. Then each of a, b, c can be
chosen in one two ways (1 or −1). So there are exactly 23 = 8 such distinct triplets : they are
listed above. So they are the rows of A, in some order, as A has size 8× 3. [3]
Also, the 3 × 3 submatrix of A having the triplets (1, 1, 1), (−1, 1, 1), (−1,−1, 1) as rows in
some order is non-singular. So the rank of A is 3. [3]

2. Find all pairs (x, y) of integers such that y2 = x(x+ 1)(x+ 2).

Solution: If x < −2, then there is no solution. [1]
If x = 0,−1,−2, then y = 0. [1]
If x ≥ 1, then gcd(x+ 1, x(x+ 2)) = 1. Therefore (x+ 1) and x(x+ 2) are both perfect squares.
But, x(x+ 2) = x2 + 2x = (x+ 1)2 − 1. This implies (x+ 1)2 and (x+ 1)2 − 1 are consecutive
numbers which are squares. This is not possible. [4]

3. Let f : R→ R be a differentiable function such that f ′ is a decreasing function. If a, b, c are real
numbers with a < c < b, prove that (b− c)f(a) + (c− a)f(b) ≤ (b− a)f(c).

Solution: Consider any c ∈ (a, b).
Applying Lagrange’s Mean Value Theorem to f on [a, c] we get, there exists x1 ∈ (a, c) such

that
f(c)− f(a)

c− a
= f ′(x1). [2]

Applying Lagrange’s Mean Value Theorem to f on [c, b] we get, there exists x2 ∈ (c, b) such that
f(b)− f(c)

b− c
= f ′(x2). [2]

Now f ′ is a decreasing function. Therefore x1 < x2 implies f ′(x2) < f ′(x1).

Hence
f(b)− f(c)

b− c
<

f(c)− f(a)
c− a

. Therefore f(b)− f(c)c− a < f(c)− f(a)b− c.
This implies (b− c)f(a) + (c− a)f(b) ≤ (b− c+ c− a)f(c) = (b− a)f(c). [2]

4. Let f(x) = a0 +a1x+a2x
2 +a3x

3 be a polynomial with integer coefficients such that a0, a3 and
f(1) are odd. Show that f has no rational root.

Solution: Suppose f has a rational root, say,
p

q
. Then f(

p

q
) = 0. Therefore a0q

3 + a1pq
2 +

a2p
2q + a3p

3 = 0.
This implies q|a3 and p|a0. Since a0, a3 are odd, p, q are also odd. [3]
Also a0q

3 + a1pq
2 + a2p

2q + a3p
3 = 0 implies a0q

3 + a1pq
2 + a2p

2q + a3p
3 ≡ 0(mod2).

Since p, q are odd, we have a0 + a1 + a2 + a3 ≡ 0(mod 2). This is contradiction because f(1) =
a0 + a1 + a2 + a3 is odd. Hence f has no rational root. [3]

5. Let f : R→ R be a function such that f(x− y) = f(x)f(y) and f(x) 6= 0 for all x. Find f(3).

Solution I: If y = x, then f(0) = [f(x)]2. If, in particular, x = 0, then f(0) = [f(0)]2. But,
f(x) 6= 0. Therefore f(0) = 1. Now [f(x)]2 = 1 implies f(x) = ±1. [2]

Put x = 1, y =
1
2
, Then f(

1
2

) = f(1)
1
2
. But, f(x) 6= 0. Therefore f(1) = 1. [2]

Also f(2− 1) = f(2)f(1) = f(1). Therefore f(2) = 1.
Also f(3− 2) = f(3)f(2) = f(1). Therefore f(3) = 1. [2]
OR
Solution II: Put x = 3, y = 1.5, then f(1.5) = f(3− 1.5) = f(3)f(1.5). Hence f(3) = 1. [6]



Part III

1. Prove that the equation ex − ln(x)− 22014 = 0 has exactly two positive real roots. [12]

Solution: Let f(x) = ex − log x− 22014, x > 0. So f ′(x) = ex − 1
x , and f ′′(x) = ex + 1

x2 . [2]
So f ′(1) = e − 1 > 0. As lim

x→0+
f ′(x) = −∞, by the continuity of f ′, f ′(x) = 0 for some value

x = a. [2]
Since f ′′(x) > 0 for x > 0, f ′ strictly increases for x > 0. Therefore f has a unique critical
point x = a. Note that f has minimum value at x = a as f ′′(a) > 0. This minimum value is
negative because, f(a) < f(1) < 0. [2]
As lim

x→0+
log x = −∞, it can be seen that f(x) is positive when x is near 0. Also, as

lim
x→∞

e−x log x = 0, it can be seen that f(x) is positive when x is large. Thus there exist b, c

with 0 < b < a and a < c such that f(b) > 0, f(a) < 0 and f(c) > 0. Hence by continuity of f,
f(x) = 0 has exactly two real roots : one root in each of the intervals (b, a) and (a, c). [6]
Note: Students may draw graphs for the proof. If only graph of f(x) is drawn, give 4 marks.
Further if there is more explanation with the graph, additional 4 marks may be given. If the
argument is complete, all marks may be given.

2. Suppose f : R → R is a non-constant function satisfying f(x + y) = f(x)f(y) for all x, y ∈ R.
Show that

(a) f(x) 6= 0 for all x ∈ R;

(b) f(x) > 0 for all x ∈ R;

(c) If f is differentiable at 0, then f is differentiable on R and there exists some real number
β such that f(x) = βx for all x ∈ R. [12]

Solution: (a) Suppose for some real number x0, we have f(x0) = 0. Then for any x ∈ R,
f(x) = f(x − x0 + x0) = f(x − x0)f(x0) = 0. Therefore f is a constant function, which is a
contradiction. Hence f(x) 6= 0 for all x ∈ R [2]

(b) Observe that f(x) = f(
x

2
)f(

x

2
) = [f(

x

2
)]2.

Therefore f(x) > 0 for all x ∈ R. [2]

(c) Suppose f ′(0) exists. Also given condition implies f(0) = 1.
Then for any x ∈ R,

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

f(x)f(h)− f(x)
h

= lim
h→0

f(x)[
f(h)− 1

h
]

= lim
h→0

f(x)[
f(h)− f(0)

h
] = f(x)f ′(0).

Therefore f is differentiable on R and f ′(x) = f(x)f ′(0). [4]

This implies
f ′

f
= k = f ′(0).

Integrating both sides with respect to x, we get,
log f(x) = kx+ c.

Now, x = 0 implies log f(0) = log 1 = c = 0.
Hence, f(x) = ekx = βx, where β = ek. [4]



3. Let n be a natural number. Suppose P1, P2, · · · , Pn are points on a circle of radius 1. Prove
that ∑

1≤i<j≤n

d(Pi, Pj)2 ≤ n2 ,

where for points X and Y in the plane, we denote by d(X,Y ) the distance between them. Prove
that equality can hold for every natural number n. [13]

Solution: Consider a circle of radius 1 with center at origin. If r1, r2, · · · , rn are position vectors
of P1, P2, · · · , Pn respectively, then we want to prove that

∑
(ri − rj) · (ri − rj) ≤ 2n2. [3]

Now
∑

(ri − rj) · (ri − rj)
= (r1 − r2) · (r1 − r2) + (r1 − r3) · (r1 − r3) + · · ·+ (r1 − rn) · (r1 − rn) + (r2 − r1) · (r2 − r1) +
(r2 − r3) · (r2 − r3) + · · ·+ (r2 − rn) · (r2 − rn) + · · ·+ (rn − rn−1) · (rn − rn−1)
= 2(n− 1)(r1 · r1 + r2 · r2 + · · ·+ rn · rn)− 2

∑
i 6=j

2ri · rj

= 2(n− 1)n− 2
∑
i6=j

2ri · rj [4]

= 2(n− 1)n+ 2(r1 · r1 + r2 · r2 + · · ·+ rn · rn)− 2(r1 · r1 + r2 · r2 + · · ·+ rn · rn)− 2
∑
i6=j

2ri · rj

= 2n2 − 2n+ 2n− (r1 + r2 + · · ·+ rn) · (r1 + r2 + · · ·+ rn)
= 2n2 − (r1 + r2 + · · ·+ rn) · (r1 + r2 + · · ·+ rn) ≤ 2n2. [4]
Equality holds if r1 + r2 + · · ·+ rn = 0. [2]

4. Let f : C → C be a function such that f(0) = 0. Suppose that |f(z) − f(w)| = |z − w| for
any w ∈ {0, 1, i} and z ∈ C. Prove that f(z) = αz or f(z) = αz for some α ∈ C with |α| = 1. [13]

Solution: Let α = f(1) and β = f(i).
By the hypothesis, |f(z)| = |z|, |f(z)− α| = |z − 1| and |f(z)− β| = |z − i| for all z ∈ C.
In particular, by substituting z = 1, i in the above equalities, we obtain
|α| = 1 = |β|, |α− β| =

√
2. [4]

We can write
α2 + β2

= α2|β|2 + β2|α|2

= α2ββ + β2αα

= αβ(αβ + βα)
= αβ(αα+ ββ − (α− β)(α− β))
= αβ(|α|2 + |β|2 − |α− β|2)
= αβ(1 + 1− 2) = 0,
yielding β = εα, where ε = ±i. [4]
Simplifying |f(z)− α|2 = |z − 1|2, we get αf(z) + αf(z) = z + z and
simplifying |f(z)− β|2 = |z − i|2, we get αf(z)− αf(z) = −εiz + εiz for all z ∈ C.
Adding up these equalities, we obtain

2αf(z) = (1− εi)z + (1 + εi)z.

If ε = i, then f(z) = αz and if ε = −i, then f(z) = αz for all z ∈ C. [5]


