MADHAVA MATHEMATICS COMPETITION, JANUARY 5, 2014
N.B. Each question in Part I carries 2 marks. [20]

LIfad—z+1=ao+ai(x—2)+ax(x—2)° +as(z —2)°, then (ag, a1, az, ag) equals
A. (1,-1,0,1) B. (7,6,10,1) C. (7,11,12,6) D. (7,11,6,1)
Solution: (D)

3

Using Taylor series expansion for f(xz) = z° —x + 1 about = 2, we get a, =

a0:7,a1:11,a2:6,a3:1.

2. Suppose f(x) and g(x) are real-valued differentiable functions such that f’(x) > ¢'(z) for all
in [0, 1]. Which of the following is necessarily true?

A. f(1) =g(1) C. f(1) —g(1) = f(0) — 9(0)

B. f — g has no maximum on [0, 1] D. f+ g is a non-decreasing function on [0, 1]
Solution: (C)

The condition f'(z) — ¢’(x) > 0 implies that f(z) — g(z) is an increasing function on [0, 1].
Therefore f(1) — g(1) > f(0) — g(0).

3. The equation z* + 22 — 1 = 0 has

A. two positive and two negative roots C. one positive, one negative and two non-real roots

B. all positive roots D. no real root
Solution: (C)

Put 2?2 = y. Then the equation becomes y?> +y — 1 = 0. Solving this equation, we get

—-1++vV5 -1 5
=y = T\f When z? = %[, we get two real values of x, one positive and other

_1_\/5
2

has one positive, one negative and two non-real roots.

negative. But no real x exists such that z* = . Hence The equation 2* + 22 — 1 =0

4. Let n be a natural number. Let A and B be n x n matrices. If A is invertible, then which of
the following is necessarily true?
A. rank(AB) < rank(B) C. rank(AB) = rank(B)

B. rank(AB) > rank(B) D. rank(AB) < rank(A)
Solution: (C)

Since A is invertible, it is product of elementary matrices. The matrix AB can be obtained from

B by performing elementary row transformations. Therefore rank(AB) = rank(B).

5. Let X be a set and A, B, C be its subsets. Which of the following is necessarily true?
A. A-(A-B)=B C. A—-(BUC)=(A-B)U(A-0C)

B. A-(BNC)=(A-B)Nn(A-C) D. B—-(A-B)=B
Solution: (D)

Note that A — B = AN B'. Also, (A— B)' = (ANB') = A' UB.

Hence B — (A—B)=BN(A—B)Y =Bn(AUB)=(BNA)UB = B.

6. For a real number x we let [x] denote the largest integer not exceeding z. For a natural number n,
[~v?]

let a,, = *——. The limit lim a,
n—oo

A. equals 0 B. equals [V2] C. equals v2 D. does not exist
Solution: (C)
Note that (n\/ﬁ) —-1< [n\/i] < n/2.

2
[n ] < /2. Taking limit as n — oo, we get The limit lim a, = v/2.

n n— oo

Therefore V2 — = <

S|



7. Let M be a two-digit natural number. Let N be the natural number whose digits are that of M
but are in the reverse order. Which of the following CANNOT be the sum of M and N?

A. 181 B. 165 C. 121 D. 154
Solution: (A)
If M = 10a; +ag, then N = 10ag+a;. Therefore M+ N = 10(ap+a1)+(ap+a1) = (11)(ap+a1).
Hence M + N is divisible by 11, but 181 is not divisible by 11.
N e’ dt

8. The value of lim “=——— is
z—1 2 —1

A.0 B.1 C. e D. ¢/2
Solution: (D)

This limit is in the g form. Then by L’Hospital rule,

. Ji et dt I d%ff e dt I e e
im = lim = lim — = —.
z—1 72 —1 z—1 2z t—1 2z 2
9. Let n be any positive integer and 1 < 7 < 22 < -+ < 41 < 2n, where each z; is an integer.

Which of the following must be true?

(I) There is an ¢ such that x; is a square of an integer.

(IT) There is an ¢ such that ;11 = z; + 1.

(III) There is an ¢ such that x; is prime.

A. Tonly B. ITonly C. Iand Il only D. II and IIT only

Solution: (B)

Let Sa, = {1,2,...,2n}. If we choose the 6 integers 2,3, 5,6, 7,8 from Sjp, then none of them is
a square. So (I) is false for n = 5. If we choose the 6 integers 1,4, 6,8,9, 10 from Sio, then none

of them is a prime. So (III) is false for n = 5.
Now (II) is clearly true for n = 2. Also, for n > 2, suppose, if possible, n + 1 integers x; can be
chosen such that

1< <2<+ < xpy1 < 2n,

and such that no two of them differ by 1. Then zo > z1 + 2, 3 > 22 + 2, ... Tp41 > Ty + 2.
Adding these, we get x,41 > 1 + 2n > 2n + 1 > 2n. This contradicts the choice of x,,+1. So
(IT) is true for every n.

10. Two real numbers x and y are chosen uniformly at random from the interval [0,1]. Find the
probability that 2z > y.

A. 1/4 B. 1/2 C. 2/3 D. 3/4

Solution: (D)

The probability that 2z > y is the area of the region in the unit square below the line 2z = y.
Thus the required probability is 3/4.

Part II
N.B. Each question in Part II carries 6 marks. [30]

1. Let A be an 8 x 3 matrix in which every entry is either 1 or —1, and no two rows are identical.
Find the rank of A.
Solution: The given conditions imply that the rows of A must be the following triplets, in some

order.

(1,1,1), (1,1,-1), (1,-1,1), (=1,1,1),
(1,-1,-1), (=1,1,-1), (=1,-1,1), (=1,—1,-1).



To see this, let (a,b,c) be a triplet satisfying the given conditions. Then each of a,b,c can be

chosen in one two ways (1 or —1). So there are exactly 2% = 8 such distinct triplets : they are

listed above. So they are the rows of A, in some order, as A has size 8 x 3. [3]
Also, the 3 x 3 submatrix of A having the triplets (1,1,1), (-1,1,1), (-=1,—1,1) as rows in
some order is non-singular. So the rank of A is 3. (3]

. Find all pairs (x,y) of integers such that y? = z(x + 1)(z + 2).

Solution: If x < —2, then there is no solution. 1]
If x =0,—1,—-2, then y = 0. [1]
If x > 1, then ged(z + 1, z(z 4 2)) = 1. Therefore (z 4+ 1) and z(z + 2) are both perfect squares.
But, z(z + 2) = 22 + 22 = (v + 1)? — 1. This implies (x + 1)? and (z + 1)? — 1 are consecutive

numbers which are squares. This is not possible. [4]

. Let f : R — R be a differentiable function such that f’ is a decreasing function. If a, b, ¢ are real
numbers with a < ¢ < b, prove that (b —¢)f(a) + (¢ —a)f(b) < (b—a)f(c).

Solution: Consider any ¢ € (a,b).

Applying Lagrange’s Mean Value Theorem to f on [a,c] we get, there exists x; € (a,c) such

that M — f’(xl). [2]
c—a
Applying Lagrange’s Mean Value Theorem to f on [c, b] we get, there exists x5 € (¢, b) such that
b) — f(c
! 2

Now f’ is a decreasing function. Therefore z1 < x5 implies f'(x2) < f'(z1).

Hence f(bl)) : f(c) < f(Ci : i(a). Therefore f(b) — f(c)c —a < f(c) — f(a)b—c.

This implies (b—c¢)f(a)+ (c—a)f(b) < (b—c+c—a)f(c) = (b—a)f(c). 2]

. Let f(z) = ag + a1x + asz? + a3z be a polynomial with integer coefficients such that ag, az and
f(1) are odd. Show that f has no rational root.

Solution: Suppose f has a rational root, say, E. Then f(g) = 0. Therefore agq® + a1pqg® +
q q

azp*q + azp® = 0.
This implies g|as and plag. Since ag, az are odd, p, ¢ are also odd. [3]
Also agq® + a1pq® + asp*q + azp® = 0 implies agq® + a1pg® + azp*q + azp® = 0(mod2).

Since p, ¢ are odd, we have ag + a1 + a2 + ag = 0(mod 2). This is contradiction because f(1) =
3]

ag + a1 + as + as is odd. Hence f has no rational root.

. Let f : R — R be a function such that f(z —y) = f(x)f(y) and f(z) # 0 for all z. Find f(3).

Solution I: If y = z, then f(0) = [f(x)]?. If, in particular, x = 0, then £(0) = [f(0)]. But,

f(x) #0. Therelfore f(0) = 1. Now [fl(:v)]2 = 1 implies f(z) = +1. 2]
Putz=1,y= X Then f(i) = f(1)§ But, f(x) # 0. Therefore f(1) = 1. 2]
Also f(2—1) = f(2)f(1) = f(1). Therefore f(2) = 1.

Also f(3—2) = f(3)f(2) = f(1). Therefore f(3) = 1. [2]
OR

Solution II: Put x = 3,y = 1.5, then f(1.5) = f(3 —1.5) = f(3)f(1.5). Hence f(3) =1.  [6]



1. Prove that the equation e* — In(x)

Part III

— 2201 — () has exactly two positive real roots. [12]

Solution: Let f(z) =e* —logz — 2291 2 > 0. So f/(z) =e® — L, and f"(z) =" + 5. [2]
So f'(1)=e—1>0. As xlir& f'(xz) = —oo, by the continuity of f’, f'(x) = 0 for some value
z=a. 2]
Since f”’(z) > 0 for x > 0, f’ strictly increases for > 0. Therefore f has a unique critical

point = a. Note that f has minimum value at © = a as f"(a) > 0. This minimum value is

negative because, f(a) < f(1) <0. 2]
As lir&_ log x = —o0, it can be seen that f(z) is positive when « is near 0. Also, as

li_)m e Flogzr = 0, it can be seen that f(x) is positive when x is large. Thus there exist b, c
ivitoﬁ 0 <b<aanda<csuch that f(b) >0, f(a) <0 and f(c) > 0. Hence by continuity of f,
f(z) = 0 has exactly two real roots : one root in each of the intervals (b,a) and (a, c). [6]
Note: Students may draw graphs for the proof. If only graph of f(z) is drawn, give 4 marks.
Further if there is more explanation with the graph, additional 4 marks may be given. If the

argument is complete, all marks may be given.

. Suppose f : R — R is a non-constant function satisfying f(xz +y) = f(z)f(y) for all z,y € R.
Show that

(a) f(x)#£0 for all x € R;

(b) f(z) >0 for all z € R;

(¢) If f is differentiable at 0, then f is differentiable on R and there exists some real number

B such that f(x) = 37 for all z € R. [12]

Solution: (a) Suppose for some real number zg, we have f(zg) = 0. Then for any x € R,
f(z) = f(z — xo + xo) = f(x — x0)f(xo) = 0. Therefore f is a constant function, which is a

contradiction. Hence f(z) # 0 for all z € R 2]
(b) Observe that f(x) = £(5)f(5) = [f(5)]*
Therefore f(x) > 0 for all x € R. [2]

(c) Suppose f/(0) exists. Also given condition implies f(0) = 1.

Then for any x € R,
)~ f(a)

h—0 h
@) - @)
=
=l )
= tim 7)) ),
Therefore f is differentiable on R and f/(z) = f(z)f'(0). [4]

This implies f7 =k = f'(0).

Integrating both sides with respect to x, we get,

log f(z) = kz + c.

Now, x = 0 implies log f(0) =logl =c¢=0.

Hence, f(z) = e = 3%, where 3 = e*. [4]



. Let n be a natural number. Suppose P, Ps,---, P, are points on a circle of radius 1. Prove
that

> (P, P)? <n?,

1<i<j<n

where for points X and Y in the plane, we denote by d(X,Y") the distance between them. Prove

that equality can hold for every natural number n. [13]
Solution: Consider a circle of radius 1 with center at origin. If 71,73, - - - , 7, are position vectors
of P, P,, -, P, respectively, then we want to prove that Z(rﬁ -75) (7 —7;) < 2n2. (3]

Now Y (75 —75) - (Fi = 75)

= (1 —73) (F1 = 72) + (7T = 73) - (7T = 73) + - + (71 = T) - (P71 = T) + (72 = 71) - (72 = 71) +
(72 —=73) (2 —73) + -+ (2 —T) (2= Ta) + -+ (P — Tuz1) - (T = Tom1)

=2n— )P Fi+T2 - Tat - +Ty Tp) =2 27575

i#]
=2(n—1n—-2> 2575 [4]
i#]
=2(n— )+ 271 - T1+T2 - Ta+ - 4T Tp) =21 FI 4T3 Ta - 4T T) =2 27575
i#]
=2 —2n 42— (F+T3+  +70) (T +Ta+ - +77)
=2 — (14724 +7) - (FT+ T2+ +7) < 2n°. (4]
Equality holds if 77 + 73 + -+ + 7, = 0. 2]

. Let f: C — C be a function such that f(0) = 0. Suppose that |f(z) — f(w)| = |z — w]| for
any w € {0,1,i} and z € C. Prove that f(z) = az or f(z) = az for some «a € C with |a| = 1. [13]

Solution: Let o = f(1) and 8 = f(7).

By the hypothesis, |f(2)| = |z],|f(z) —a| = |z — 1| and |f(2) — 8] = |z —i| for all z € C.

In particular, by substituting z = 1,7 in the above equalities, we obtain

lal =1 = 8], la— B8 = V2 4]
We can write

a? + 32

= o?|B]? + B?|af?

=a’fp + Poa

= afi(af + fa)

— af(ot+ 85— (a - f)@—B))

— aB(al? + 187 — |a - BP)

=af(1+1-2)=0,

yielding § = ea, where € = =i. [4]

Simplifying |f(2) — af?> = |z — 1|?, we get af(z) + af(z) = z + %z and

simplifying |f(2) — 8% = |z — i|?, we get @f(z) — af(z) = —€iz + €iz for all z € C.
Adding up these equalities, we obtain

2af(z) = (1 —ei)z+ (1 +€i)z.

If e = i, then f(z) = az and if e = —i, then f(z) = oz for all z € C. [5]




