
MADHAVA MATHEMATICS COMPETITION, December 2015
Solutions and Scheme of Marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50
marks.

Part I
N.B. Each question in Part I carries 2 marks.

1. Let A(t) denote the area bounded by the curve y = e−|x|, the X− axis and the straight
lines x = −t, x = t, then lim

t→∞
A(t) is

A) 2 B) 1 C) 1/2 D) e.
Solution: (A)

As f(x) = e−|x| is an even function, A(t) = 2

∫ 0

−t

∫ ex

0
1 dydx = 2

∫ 0

−t
exdx = 2(e0 − e−t)

→ 2 as t→∞. OR A(t) = 2

∫ t

0
ex dx = −2(e−t − 1)→ 2 as t→∞.

2. How many triples of real numbers (x, y, z) are common solutions of the equations
x+ y = 2, xy − z2 = 1?
A) 0 B) 1 C) 2 D) infinitely many.
Solution: (B)
xy = 1+z2 ≥ 1 so that −4xy ≤ −4. Hence (x−y)2 = (x+y)2−4xy = 4−4xy ≤ 4−4 = 0.
So x = y. Thus the only solution is x = 1, y = 1, z = 0.

3. For non-negative integers x, y the function f(x, y) satisfies the relations f(x, 0) = x and
f(x, y + 1) = f(f(x, y), y). Then which of the following is the largest?
A) f(10, 15) B) f(12, 13) C) f(13, 12) D) f(14, 11).
Solution: (D)
f(x, 1) = f(f(x, 0), 0) = f(x, 0) = x. Inductively f(x, y) = x for all integers y ≥ 0.

4. Suppose p, q, r, s are 1, 2, 3, 4 in some order. Let x =
1

p+
1

q +
1

r +
1

s

.

We choose p, q, r, s so that x is as large as possible, then s is
A) 1 B) 2 C) 3 D) 4.
Solution: (C)
For x to be the largest, p, q, r, s should be min{1, 2, 3, 4}, max{1, 2, 3, 4}, min{2, 3},
max{2, 3} respectively. So s = 3.

5. Let f(x) =

{
3x+ x2 if x < 0

x3 + x2 if x ≥ 0.
Then f ′′(0) is

A) 0 B) 2 C) 3 D) None of these.
Solution: (D)
f ′−(x) = 3 + 2x, for x < 0 and f ′+(x) = 3x2 + 2x, for x ≥ 0. So f ′(0) does not exist
because f ′−(0) = 3 6= 0 = f ′+(0).

6. There are 8 teams in pro-kabaddi league. Each team plays against every other exactly
once. Suppose every game results in a win, that is, there is no draw. Let w1, w2, · · · , w8

be number of wins and l1, l2, · · · , l8 be number of loses by teams T1, T2, · · · , T8, then
A) w2

1 + · · ·+ w2
8 = 49 + (l21 + · · ·+ l28). B) w2

1 + · · ·+ w2
8 = l21 + · · ·+ l28.

C) w2
1 + · · ·+ w2

8 = 49− (l21 + · · ·+ l28). D) None of these.
Solution: (B)
Note that wi + li = 7 for all i and

∑
wi −

∑
li =

∑
(wi − li) = 0. Then

∑
w2
i −

∑
l2i =∑

(wi + li)(wi + li) = 7
∑

(wi − li) = 0.

1



7. The remainder when m+n is divided by 12 is 8, and the remainder when m−n is divided
by 12 is 6. If m > n, then the remainder when mn divided by 6 is
A) 1 B) 2 C) 3 D) 4 .
Solution: (A)
Note that m + n ≡ 8(mod 12) and m − n ≡ 6(mod 12). Adding these congruences, we
get, 2m ≡ 2(mod 12). This implies m ≡ 1(mod 6). Similarly by subtracting, we get, n ≡ 1(
mod 6). Thus mn ≡ 1(mod 6).

8. Let A =


1 2 . . . n

n+ 1 n+ 2 . . . 2n
...

. . .
...

(n− 1)n+ 1 (n− 1)n+ 2 . . . n2

 . Select any entry and call it x1. Delete

row and column containing x1 to get an (n− 1)× (n− 1) matrix. Then select any entry
from the remaining entries and call it x2. Delete row and column containing x2 to get
(n− 2)× (n− 2) matrix. Perform n such steps. Then x1 + x2 + · · ·+ xn is

A) n B)
n(n+ 1)

2
C)

n(n2 + 1)

2
D) None of these.

Solution: (C)

For n = 4, A =


1 2 3 4

1 + 4 2 + 4 3 + 4 4 + 4
1 + 8 2 + 8 3 + 8 4 + 8
1 + 12 2 + 12 3 + 12 4 + 12

 . Note that S = x1 + x2 + x3 + x4 =

a + (b + 4) + (c + 8) + (d + 12) where a, b, c, d is a permutation of 1, 2, 3, 4. So S =
a+ b+ c+ d+ 24 = 10 + 24 = 34. Thus S is the same for all stated choices of x1, . . . , xn.
Hence taking xi’s as the main diagonal elements,

S = 1 + (n+ 2) + (2n+ 3) + . . .+ [n(n− 1) + n]
= [n+ 2n+ . . .+ n(n− 1)] + [1 + 2 + . . .+ n]

=
n(n− 1)n

2
+
n(n+ 1)

2
=
n(n2 + 1)

2
.

9. The maximum of the areas of the rectangles inscribed in the region bounded by the curve
y = 3− x2 and X−axis is
A) 4 B) 1 C) 3 D) 2.
Solution: (A)
By symmetry, let the base of the rectangle be segment with ends −x, x and height y.
Then area A(x) = 2xy = 2x(3− x2) = 6x− 2x3 and A′(x) = 6− 6x2, A′(x) = −12x. So
A′(x) = 0 at x2 = 1 i.e. x = 1; and A′′(1) = −12 < 0. So A(x) is maximum at x = 1
with maximum value A(1) = 4.

10. How many factors of 253652 are perfect squares?
A) 24 B) 20 C) 30 D) 36.
Solution: (A)
Factors that are perfect squares will be of the form d = 2a3b5c where a = 0, 2 or 4,
b = 0, 2, 4 or 6, and c = 0 or 2. Thus there are 3× 4× 2 possible divisors that are perfect
squares.

Part II
N.B. Each question in Part II carries 6 marks.

1. How many 15−digit palindromes are there in each of which the product of the non-
zero digits is 36 and the sum of the digits is equal to 15? (A string of digits is called a
palindrome if it reads the same forwards and backwards. For example 04340, 6411146.)
Solution: The first 7 digits completely determine the number. Since the sum of digits is
15, the 8th digit is odd and is a factor of 36. Note that the product of all non-zero digits
( except the digit in the 8th place ) is a square using the definition of palindrome. Hence
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the 8th digit cannot be 3 because the product in that case is 12. So the 8th digit is either
1 or 9. [2]
Case 1: If the 8th digit is 1 then the digits in first seven places can either be
a permutation of 1,1,2,3,0,0,0 or 1,6,0,0,0,0,0 because these are the only possibilities with
sum 7 and product 6.

Number of permutations of 1,1,2,3,0,0,0 is
7!

2!3!
.

Number of permutations of 1,6,0,0,0,0,0 is
7!

5!
. [2]

Case 2: If the 8th digit is 9 then the digits in first seven places will be a permutation of
1,2,0,0,0,0,0 because this is the only possibility with sum 3 and product 2..

Number of permutations of 1,2,0,0,0,0,0 is
7!

5!
.

Thus the number of required 15 digit palindromes with product of nonzero digits 36 and

sum of digits 15 is
7!

2!3!
+

7!

5!
+

7!

5!
. [2]

2. Let H be a finite set of distinct positive integers none of which has a prime factor greater
than 3. Show that the sum of the reciprocals of the elements of H is smaller than 3. Find
two different such sets with sum of the reciprocals equal to 2.5.
Solution: The given condition implies that every n ∈ H, n is of the form n = 2α3β,
α, β ≥ 0. Since H is finite, ∃k ∈ N such that α ≤ k, β ≤ k for each n ∈ H. This implies∑
n∈H

1

n
≤ 1 +

k∑
i=1

1

2i
+

k∑
j=1

1

3j
+

k∑
i=1

k∑
j=1

1

2i3j

= 1 +
k∑
i=1

1

2i
+

k∑
j=1

1

3j
+

(
k∑
i=1

1

2i

) k∑
j=1

1

3j


=

(
1 +

1

2
+ · · ·+ 1

2k

)(
1 +

1

3
+ · · ·+ 1

3k

)
[3]

= (
1− 1

2k+1

1− 1/2
)(

1− 1
3k+1

1− 1/3
) < (

1

1/2
)(

1

2/3
) = 2(

3

2
) = 3. [1]

Let H = {1, 2, 3, 4, 6, 8, 12, 24}. Then
∑
n∈H

1

n
= 2.5. [1]

Let H = {1, 2, 3, 4, 6, 8, 12, 36, 72}. Then
∑
n∈H

1

n
= 2.5. [1]

Any other correct choices for H, also carries one mark each.

3. Let A be an n× n matrix with real entries such that each row sum is equal to one. Find
the sum of all entries of A2015.
Solution: Let A be an n × n matrix with real entries such that each row sum is equal
to one. This implies

A


1
1
...
1

 =


1
1
...
1

 . [3]

By repeated use of this, we get

A2015


1
1
...
1

 =


1
1
...
1

 . [2]

So each row sum of A2015 is equal to one. Hence the sum of all entries of A2015 is n. [1]

4. Let f : R→ R be a differentiable function such that f(0) = 0, f ′(x) > f(x) for all x ∈ R.
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Prove that f(x) > 0 for all x > 0.

Solution: By data, f ′(0) > f(0) = 0. So lim
x→0+

f(x)

x
> 0. Hence ∃ δ > 0, such that

f(x) > 0 for all x ∈ (0, δ). [1]
Now if there exists x0 > 0 such that f(x0) ≤ 0, then by intermediate value property,
there exists x1 ≥ δ such that f(x1) = 0. Let c = inf A, A = {x | x > 0 , f(x) = 0}. [1]
Clearly, as f is continuous and c is inf A, f(x) ≥ 0, for x ∈ [0, c]. So c ≥ δ. By the
property of infimum, there exists a sequence {xn} of points which converges to c, and
xn > 0 and f(xn) = 0. By continuity, f(c) = lim

n→∞
f(xn) = 0. [1]

This implies that in (0, c), f(x) > 0 and f(0) = f(c) = 0. Hence by Rolle’s theorem,
f ′(b) = 0 for some b, 0 < b < c. [2]
But then f(b) < f ′(b) = 0 which is a contradiction. Hence f(x) > 0 for all x > 0. [1]

Second method. As before, ∃ δ > 0, such that f(x) > 0 for all x ∈ (0, δ). [1]
Let S = {x | f(t) > 0 for t ∈ (0, x).} Then δ ∈ S so that S is non-empty. Let m = supS.
If m =∞, we are done. Let, if possible, m <∞. Now f(x) > 0, x ∈ (0,m). By continuity,
f(m) = lim

t→m−
f(t) ≥ 0. [2]

So for all x ∈ [0,m], f ′(x) > f(x) ≥ 0 so that f ′(x) > 0. Hence f is strictly increasing
on [0,m], in particular, f(m) > f(m/2) > 0. Since f(m) > 0, by continuity, there exists
δ1 > 0 such that f(x) > 0 in [m,m + δ1). So, f(x) > 0, for x ∈ (0,m + δ1). Thus
m+ δ1 ∈ S, which is a contradiction since m = supS. Hence m =∞. [3]

5. Give an example of a function which is continuous on [0, 1], differentiable on (0, 1) and
not differentiable at the end points. Justify.
Solution: f(x) =

√
x− x2 for x ∈ [0, 1]. [3]

Then f ′(x) exists on (0, 1), f ′(x) =
1− 2x

2
√
x− x2

. [1]

But f ′(0) = f ′(1) =∞. [2]
Note: Any other correct example with justification will carry full marks.

Part III

1. There are some marbles in a bowl. A, B and C take turns removing one or two marbles
from the bowl, with A going first, then B, then C, then A again and so on. The player
who takes the last marble from the bowl is the loser and the other two players are the
winners. If the game starts with N marbles in the bowl, for what values of N can B and
C work together and force A to lose? [12]

Solution: We claim that B and C can force A to lose for all N except
N = 2; 3; 4; 7; or 8.
At N = 2, A leaves 1.
At N = 3 or 4, A leaves 2.
At N = 7 or 8, A leaves 6 after which B and C must leave 2, 3 or 4.
For N = 5 or 6, regardless of what A takes, B and C can work it so that when A’s turn
arrives there is only one marble left.
For N = 9 or 10, A must leave 7, 8 or 9 from which B and C can force 5 or 6. [6]
For N = 4k where k > 2, A must leave either 4k − 1 or 4k − 2 from which B and C can
force 4(k − 1) + 1 or 4(k − 2) + 2.
For N = 4k+1, A must leave either 4k or 4k−1 from which B and C can force 4(k−1)+2
or 4(k − 1) + 1.
For N = 4k+2, A must leave either 4k+1 or 4k from which B and C can force 4(k−1)+2
or 4(k − 1) + 1.
For N = 4k + 3, A must leave either 4k + 2 or 4k + 1 from which B and C can force
4(k − 1) + 2.
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In all cases for N ≥ 11, A will always be faced with a new value of the form 4t + 1 or
4t+ 2 on his next turn eventually forcing him to N = 5 or 6 and a loss. [6]

2. Let f : R → R be a function such that f ′(0) exists. Suppose αn 6= βn,∀n ∈ N and both

sequences {αn} and {βn} converge to zero. Define Dn =
f(βn)− f(αn)

βn − αn
.

Prove that lim
n→∞

Dn = f ′(0) under EACH of the following conditions:

(a) αn < 0 < βn, ∀n ∈ N.

(b) 0 < αn < βn and
βn

βn − αn
≤M, ∀n ∈ N, for some M > 0.

(c) f ′(x) exists and is continuous for all x ∈ (−1, 1). [13]

Solution: Let ε > 0 be given. Given that f ′(0) = lim
x→0

f(x)− f(0)

x
exists.

(a) Given that αn < 0 < βn, ∀n ∈ N. Since αn → 0 and βn → 0, we have

f ′(0) = lim
n→∞

f(αn)− f(0)

αn
and f ′(0) = lim

n→∞

f(βn)− f(0)

βn
.

There exist n1, n2 ∈ N such that |f(αn)− f(0)−αnf ′(0)| < |αn|ε = −αnε, ∀n ≥ n1 and

|f(βn)− f(0)− βnf ′(0)| < |βn|ε = βnε, ∀n ≥ n2.

Let n0 = max{n1, n2}. Then ∀n ≥ n0, we get

|f(βn)− f(αn)− (βn − αn)f ′(0)|

≤ |f(βn)− f(0)− βnf ′(0)|+ |f(αn)− f(0)− αnf ′(0)| < (βn − αn)ε.

Thus |f(βn)− f(αn)

βn − αn
− f ′(0)| < ε, ∀n ≥ n0.

Hence lim
n→∞

Dn = f ′(0). [4]

(b) Given that 0 < αn < βn and
βn

βn − αn
≤M, ∀n ∈ N, for some M > 0.

Since αn < βn, observe that
αn

βn − αn
≤M, ∀n ∈ N.

Similar to part (a), there exist n1, n2 ∈ N such that |f(αn)− f(0)− αnf ′(0)| < |αn|ε =
αnε, ∀n ≥ n1 and |f(βn)− f(0)− βnf ′(0)| < |βn|ε = βnε, ∀n ≥ n2.
Let n0 = max{n1, n2}. Then ∀n ≥ n0, we get

|f(βn)− f(αn)

βn − αn
− f ′(0)|

= |f(βn)− f(αn)

βn − αn
− (

βn − αn
βn − αn

)f ′(0)|

= |f(βn)− f(αn)

βn − αn
− βnf

′(0)

βn − αn
+
αnf

′(0)

βn − αn
|

= |(f(βn)− f(0)− βnf ′(0)

βn − αn
)− (

f(αn)− f(0)− αnf ′(0)

βn − αn
)|

≤ |f(βn)− f(0)− βnf ′(0)

βn − αn
|+ |f(αn)− f(0)− αnf ′(0)

βn − αn
|

< (
βn

βn − αn
)ε+ (

αn
βn − αn

)ε ≤ 2Mε.

Hence lim
n→∞

Dn = f ′(0). [5]

(c) Given that f ′(x) exists and is continuous for all x ∈ (−1, 1).
By Lagrange’s Mean Value Theorem, for every positive integer n, there exists cn between
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αn and βn such that

Dn =
f(βn)− f(αn)

βn − αn
= f ′(cn).

Since αn → 0 and βn → 0, cn → 0. It is given that f ′(x) is continuous.
Therefore lim

n→∞
f ′(cn) = f ′(0).

Hence lim
n→∞

Dn = f ′(0). [4]

Second method for (a), (b). Let g(x) = f(x) − f(0) − xf ′(0) on R. Then g(0) = 0

and g′(0) = lim
x→0

g(x)

x
= lim

x→0

[
f(x)− f(0)

x
− f ′(0)

]
= 0. Let En =

g(βn)− g(αn)

βn − αn
. Then

En = Dn − f ′(0).

(a) Let αn < 0 < βn. Then 0 < −αn < βn − αn. Hence 0 <
−αn

βn − αn
< 1. Also, here

βn − αn > βn so that 0 <
βn

βn − αn
< 1. Hence

lim
n→∞

En = lim
n→∞

g(βn)

βn

(
βn

βn − αn

)
+ lim
n→∞

g(αn)

αn

(
−αn

βn − αn

)
= 0,

as the sequences in brackets are both bounded and g′(0) = 0. [4]

(b) Let 0 < αn < βn and 0 <
βn

βn − αn
< M. Then βn − αn > 0 and so

0 <
αn

βn − αn
<

βn
βn − αn

< M. Hence

lim
n→∞

En = lim
n→∞

g(βn)

βn

(
βn

βn − αn

)
− lim
n→∞

g(αn)

αn

(
αn

βn − αn

)
= 0, as in (a). [5]

3. Let f(x) = x5. For x1 > 0, let P1 = (x1, f(x1)). Draw a tangent at the point P1 and let
it meet the graph again at point P2. Then draw a tangent at P2 and so on. Show that

the ratio
A(4PnPn+1Pn+2)

A(4Pn+1Pn+2Pn+3)
is constant. [12]

Solution: Let f(x) = x5. For x1 > 0, let P1 = (x1, f(x1)). Draw a tangent at the point
P1 and let it meet the graph again at point P2. Recursively Pn+1 is defined. We now
try to calculate P2 in terms of P1. Tangent at P1 is given by y − y1 = 5x41(x − x1) i.e.
y = 5x41x− 4x51. This cuts the curve y = x5 at x = x2, x2 6= x1. Hence

x52 − 5x41x2 + 4x51 = 0.

This is a homogeneous equation in x1, x2. So put x2 = kx1, k 6= 1, then x51k
5 − 5kx51 +

4x51 = 0. This implies k5 − 5k + 4 = 0 i.e. (k − 1)2(k3 + 2k2 + 3k + 4) = 0. Since
k 6= 1, k3 + 2k2 + 3k + 4 = 0. Observe that this cubic equation has one real and two
complex roots. (g′(x) = 3k2 + 4k + 3 6= 0.) The real root k must be negative. [5]

If x3 = `x2, then by similar argument, we see that ` is again the above negative root k
of k3 + 2k2 + 3k+ 4 = 0. Thus x3 = kx2 = k2x1. Hence by induction, xn+1 = knx1 for all
n ≥ 1. [2]
We now calculate A(4PnPn+1Pn+2)

A(4PnPn+1Pn+2) =
1

2
det

 xn x5n 1
xn+1 x5n+1 1
xn+2 x5n+2 1


=

1

2
det

kn−1x1 k5n−5x51 1
knx1 k5nx51 1
kn+1x1 k5n+5x51 1


6



=
kn−1x1k

5n−5x51
2

det

 1 1 1
k k5 1
k2 k10 1


= k6n−6x61D, where D =

1

2
det

 1 1 1
k k5 1
k2 k10 1

 6= 0 since k 6= −1.

Then A(4Pn+1Pn+2Pn+3) = k6nx61D.

Hence the ratio
A(4PnPn+1Pn+2)

A(4Pn+1Pn+2Pn+3)
=

1

k6
is constant. [5]

4. Let p(x) be a polynomial with positive integer coefficients. You can ask the question:
What is p(n) for any positive integer n? What is the minimum number of questions to
be asked to determine p(x) completely? Justify. [13]

Solution: The minimum number of questions needed is 2. For this, let p(x) be a
polynomial with positive integer coefficients say, p(x) = a0 + a1x+ a2x

2 + · · ·+ akx
k. We

can ask the question: what is p(1)? Let p(1) = N. [3]

Here N = a0 + a1 + a2 + · · ·+ ak > ai, ∀i and N is a known number.

Also, what is p(N)? So p(N) = a0 + a1N + a2N
2 + · · ·+ akN

k is a known number. [4]

Now express p(N) to base N, then ith digit gives ai, ∀i because ai < N, ∀i. Thus p(x) is
determined. [6]
Note that asking only one question i.e. asking for the value p(n) for a particular choice
of n, is not sufficient to determine the polynomial p(x).

Example. Suppose p(1) = 9 and p(9) = 193. Now we express 193 to base 9 :

193 = 21(9) + 4, 21 = 2(9) + 3, 2 = 0(9) + 2.

So the remainders are, starting with the last, 2, 3, 4. So 193 = 2(92)+3(9)+4(90) = (234)9.
So a2 = 2, a1 = 3, a0 = 4 and p(x) = 4 + 3x+ 2x2.
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