MADHAVA MATHEMATICS COMPETITION, December 2015 Solutions and Scheme of Marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50 marks.

Part I

N.B. Each question in Part I carries 2 marks.

- Let A(t) denote the area bounded by the curve y = e^{-|x|}, the X axis and the straight lines x = -t, x = t, then lim A(t) is

 A) 2
 B) 1
 C) 1/2
 D) e.

 Solution: (A)

 As f(x) = e^{-|x|} is an even function, A(t) = 2 ∫_{-t}⁰ ∫₀^{e^x} 1 dydx = 2 ∫_{-t}⁰ e^xdx = 2(e⁰ e^{-t}) → 2 as t → ∞.

 How many triples of real numbers (x, y, z) are common solutions of the equations
- 2. How many triples of real numbers (x, y, z) are common solutions of the equations x + y = 2, $xy z^2 = 1$? A) 0 B) 1 C) 2 D) infinitely many. Solution: (B) $xy = 1+z^2 \ge 1$ so that $-4xy \le -4$. Hence $(x-y)^2 = (x+y)^2 - 4xy = 4 - 4xy \le 4 - 4 = 0$. So x = y. Thus the only solution is x = 1, y = 1, z = 0.
- 3. For non-negative integers x, y the function f(x, y) satisfies the relations f(x, 0) = x and f(x, y + 1) = f(f(x, y), y). Then which of the following is the largest? A) f(10, 15) B) f(12, 13) C) f(13, 12) D) f(14, 11). Solution: (D) f(x, 1) = f(f(x, 0), 0) = f(x, 0) = x. Inductively f(x, y) = x for all integers $y \ge 0$.
- $f(x, 1) = j(j(x, 0), 0) \quad \text{if } x = \frac{1}{p + \frac{1}{q + \frac{1}{r + \frac{1}{s}}}}.$ 4. Suppose p, q, r, s are 1, 2, 3, 4 in some order. Let $x = \frac{1}{p + \frac{1}{r + \frac{1}{s}}}.$

We choose p, q, r, s so that x is as large as possible, then s is A) 1 B) 2 C) 3 D) 4.

Solution: (C)

For x to be the largest, p, q, r, s should be min $\{1, 2, 3, 4\}$, max $\{1, 2, 3, 4\}$, min $\{2, 3\}$, max $\{2, 3\}$ respectively. So s = 3.

- 5. Let $f(x) = \begin{cases} 3x + x^2 & \text{if } x < 0 \\ x^3 + x^2 & \text{if } x \ge 0. \end{cases}$ Then f''(0) is A) 0 B) 2 C) 3 D) None of these. Solution: (D) $f'_{-}(x) = 3 + 2x$, for x < 0 and $f'_{+}(x) = 3x^2 + 2x$, for $x \ge 0$. So f'(0) does not exist because $f'_{-}(0) = 3 \ne 0 = f'_{+}(0)$.
- 6. There are 8 teams in pro-kabaddi league. Each team plays against every other exactly once. Suppose every game results in a win, that is, there is no draw. Let w_1, w_2, \dots, w_8 be number of wins and l_1, l_2, \dots, l_8 be number of loses by teams T_1, T_2, \dots, T_8 , then A) $w_1^2 + \dots + w_8^2 = 49 + (l_1^2 + \dots + l_8^2)$. B) $w_1^2 + \dots + w_8^2 = l_1^2 + \dots + l_8^2$. C) $w_1^2 + \dots + w_8^2 = 49 (l_1^2 + \dots + l_8^2)$. D) None of these. Solution: (B) Note that $w_i + l_i = 7$ for all i and $\sum w_i \sum l_i = \sum (w_i l_i) = 0$. Then $\sum w_i^2 \sum l_i^2 = \sum (w_i + l_i)(w_i + l_i) = 7 \sum (w_i l_i) = 0$.

7. The remainder when m+n is divided by 12 is 8, and the remainder when m-n is divided by 12 is 6. If m > n, then the remainder when mn divided by 6 is A) 1 B) 2 C) 3 D) 4.

Solution: (A)

Note that $m + n \equiv 8 \pmod{12}$ and $m - n \equiv 6 \pmod{12}$. Adding these congruences, we get, $2m \equiv 2 \pmod{12}$. This implies $m \equiv 1 \pmod{6}$. Similarly by subtracting, we get, $n \equiv 1 \pmod{6}$. Thus $mn \equiv 1 \pmod{6}$.

8. Let
$$A = \begin{pmatrix} 1 & 2 & \dots & n \\ n+1 & n+2 & \dots & 2n \\ \vdots & \ddots & \vdots \\ (n-1)n+1 & (n-1)n+2 & \dots & n^2 \end{pmatrix}$$
. Select any entry and call it x_1 . Delete

row and column containing x_1 to get an $(n-1) \times (n-1)$ matrix. Then select any entry from the remaining entries and call it x_2 . Delete row and column containing x_2 to get $(n-2) \times (n-2)$ matrix. Perform n such steps. Then $x_1 + x_2 + \cdots + x_n$ is

A) $n \to \frac{n(n+1)}{2}$ C) $\frac{n(n^2+1)}{2}$ D) None of these. Solution: (C)

For
$$n = 4$$
, $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1+4 & 2+4 & 3+4 & 4+4 \\ 1+8 & 2+8 & 3+8 & 4+8 \\ 1+12 & 2+12 & 3+12 & 4+12 \end{pmatrix}$. Note that $S = x_1 + x_2 + x_3 + x_4 =$

a + (b + 4) + (c + 8) + (d + 12) where a, b, c, d is a permutation of 1, 2, 3, 4. So S = a + b + c + d + 24 = 10 + 24 = 34. Thus S is the same for all stated choices of x_1, \ldots, x_n . Hence taking x_i 's as the main diagonal elements,

$$S = 1 + (n+2) + (2n+3) + \dots + [n(n-1)+n]$$

= $[n+2n+\dots+n(n-1)] + [1+2+\dots+n]$
= $\frac{n(n-1)n}{2} + \frac{n(n+1)}{2} = \frac{n(n^2+1)}{2}.$

9. The maximum of the areas of the rectangles inscribed in the region bounded by the curve $y = 3 - x^2$ and X-axis is

A) 4 B) 1 C) 3 D) 2.

Solution: (A)

By symmetry, let the base of the rectangle be segment with ends -x, x and height y. Then area $A(x) = 2xy = 2x(3 - x^2) = 6x - 2x^3$ and $A'(x) = 6 - 6x^2$, A'(x) = -12x. So A'(x) = 0 at $x^2 = 1$ i.e. x = 1; and A''(1) = -12 < 0. So A(x) is maximum at x = 1 with maximum value A(1) = 4.

10. How many factors of $2^5 3^6 5^2$ are perfect squares? A) 24 B) 20 C) 30 D) 36.

Solution: (A)

Factors that are perfect squares will be of the form $d = 2^a 3^b 5^c$ where a = 0, 2 or 4, b = 0, 2, 4 or 6, and c = 0 or 2. Thus there are $3 \times 4 \times 2$ possible divisors that are perfect squares.

Part II

N.B. Each question in Part II carries 6 marks.

How many 15-digit palindromes are there in each of which the product of the non-zero digits is 36 and the sum of the digits is equal to 15? (A string of digits is called a palindrome if it reads the same forwards and backwards. For example 04340, 6411146.)
 Solution: The first 7 digits completely determine the number. Since the sum of digits is 15, the 8th digit is odd and is a factor of 36. Note that the product of all non-zero digits (except the digit in the 8th place) is a square using the definition of palindrome. Hence

the 8^{th} digit cannot be 3 because the product in that case is 12. So the 8^{th} digit is either 1 or 9. $[\mathbf{2}]$

Case 1: If the 8^{th} digit is 1 then the digits in first seven places can either be a permutation of 1,1,2,3,0,0,0 or 1,6,0,0,0,0 because these are the only possibilities with sum 7 and product 6.

Number of permutations of 1,1,2,3,0,0,0 is $\frac{7!}{\frac{2!3!}{5!}}$. [2]

Case 2: If the 8^{th} digit is 9 then the digits in first seven places will be a permutation of 1,2,0,0,0,0,0 because this is the only possibility with sum 3 and product 2...

Number of permutations of 1,2,0,0,0,0,0 is $\frac{7!}{5!}$. Thus the number of required 15 digit palindromes with product of nonzero digits 36 and sum of digits 15 is $\frac{7!}{2!3!} + \frac{7!}{5!} + \frac{7!}{5!}$. [2]

2. Let H be a finite set of distinct positive integers none of which has a prime factor greater than 3. Show that the sum of the reciprocals of the elements of H is smaller than 3. Find two different such sets with sum of the reciprocals equal to 2.5.

Solution: The given condition implies that every $n \in H$, n is of the form $n = 2^{\alpha} 3^{\beta}$, $\alpha, \beta \geq 0$. Since H is finite, $\exists k \in \mathbb{N}$ such that $\alpha \leq k, \beta \leq k$ for each $n \in H$. This implies

$$\sum_{n \in H} \frac{1}{n} \leq 1 + \sum_{i=1}^{k} \frac{1}{2^{i}} + \sum_{j=1}^{k} \frac{1}{3^{j}} + \sum_{i=1}^{k} \sum_{j=1}^{k} \frac{1}{2^{i}3^{j}}$$

$$= 1 + \sum_{i=1}^{k} \frac{1}{2^{i}} + \sum_{j=1}^{k} \frac{1}{3^{j}} + \left(\sum_{i=1}^{k} \frac{1}{2^{i}}\right) \left(\sum_{j=1}^{k} \frac{1}{3^{j}}\right)$$

$$= \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{k}}\right) \left(1 + \frac{1}{3} + \dots + \frac{1}{3^{k}}\right)$$
[3]

$$= \left(\frac{1 - \frac{1}{2^{k+1}}}{1 - 1/2}\right) \left(\frac{1 - \frac{1}{3^{k+1}}}{1 - 1/3}\right) < \left(\frac{1}{1/2}\right) \left(\frac{1}{2/3}\right) = 2\left(\frac{3}{2}\right) = 3.$$
 [1]

Let
$$H = \{1, 2, 3, 4, 6, 8, 12, 24\}$$
. Then $\sum_{n \in H} \frac{1}{n} = 2.5$. [1]

Let
$$H = \{1, 2, 3, 4, 6, 8, 12, 36, 72\}$$
. Then $\sum_{n \in H} \frac{1}{n} = 2.5$. [1]

Any other correct choices for H, also carries one mark each.

3. Let A be an $n \times n$ matrix with real entries such that each row sum is equal to one. Find the sum of all entries of A^{2015} .

Solution: Let A be an $n \times n$ matrix with real entries such that each row sum is equal to one. This implies

$$A\begin{pmatrix}1\\1\\\vdots\\1\end{pmatrix} = \begin{pmatrix}1\\1\\\vdots\\1\end{pmatrix}.$$
[3]

By repeated use of this, we get $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$A^{2015} \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}.$$
 [2]

So each row sum of A^{2015} is equal to one. Hence the sum of all entries of A^{2015} is n. [1] 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0, f'(x) > f(x) for all $x \in \mathbb{R}$. Prove that f(x) > 0 for all x > 0.

Solution: By data, f'(0) > f(0) = 0. So $\lim_{x \to 0+} \frac{f(x)}{x} > 0$. Hence $\exists \delta > 0$, such that f(x) > 0 for all $x \in (0, \delta)$. [1]

Now if there exists $x_0 > 0$ such that $f(x_0) \leq 0$, then by intermediate value property, there exists $x_1 \ge \delta$ such that $f(x_1) = 0$. Let $c = \inf A$, $A = \{x \mid x > 0, f(x) = 0\}$. [1] Clearly, as f is continuous and c is $A, f(x) \ge 0$, for $x \in [0, c]$. So $c \ge \delta$. By the property of infimum, there exists a sequence $\{x_n\}$ of points which converges to c, and $x_n > 0$ and $f(x_n) = 0$. By continuity, $f(c) = \lim_{n \to \infty} f(x_n) = 0$. [1]

This implies that in (0,c), f(x) > 0 and f(0) = f(c) = 0. Hence by Rolle's theorem, f'(b) = 0 for some b, 0 < b < c. $[\mathbf{2}]$

But then f(b) < f'(b) = 0 which is a contradiction. Hence f(x) > 0 for all x > 0. [1]

Second method. As before, $\exists \delta > 0$, such that f(x) > 0 for all $x \in (0, \delta)$. [1]Let $S = \{x \mid f(t) > 0 \text{ for } t \in (0, x)\}$ Then $\delta \in S$ so that S is non-empty. Let $m = \sup S$. If $m = \infty$, we are done. Let, if possible, $m < \infty$. Now $f(x) > 0, x \in (0, m)$. By continuity, $f(m) = \lim_{t \to m-} f(t) \ge 0.$ $[\mathbf{2}]$

So for all $x \in [0, m]$, $f'(x) > f(x) \ge 0$ so that f'(x) > 0. Hence f is strictly increasing on [0, m], in particular, f(m) > f(m/2) > 0. Since f(m) > 0, by continuity, there exists $\delta_1 > 0$ such that f(x) > 0 in $[m, m + \delta_1)$. So, f(x) > 0, for $x \in (0, m + \delta_1)$. Thus $m + \delta_1 \in S$, which is a contradiction since $m = \sup S$. Hence $m = \infty$. [3]

5. Give an example of a function which is continuous on [0,1], differentiable on (0,1) and not differentiable at the end points. Justify.

[3]

Solution: $f(x) = \sqrt{x - x^2}$ for $x \in [0, 1]$. Then f'(x) exists on (0, 1), $f'(x) = \frac{1 - 2x}{2\sqrt{x - x^2}}$. [1]

[2]

But $f'(0) = f'(1) = \infty$.

Note: Any other correct example with justification will carry full marks.

Part III

1. There are some marbles in a bowl. A, B and C take turns removing one or two marbles from the bowl, with A going first, then B, then C, then A again and so on. The player who takes the last marble from the bowl is the loser and the other two players are the winners. If the game starts with N marbles in the bowl, for what values of N can B and C work together and force A to lose? [12]

Solution: We claim that B and C can force A to lose for all N except

N = 2; 3; 4; 7; or 8.

At N = 2, A leaves 1.

At N = 3 or 4, A leaves 2.

At N = 7 or 8, A leaves 6 after which B and C must leave 2, 3 or 4.

For N = 5 or 6, regardless of what A takes, B and C can work it so that when A's turn arrives there is only one marble left.

For N = 9 or 10, A must leave 7, 8 or 9 from which B and C can force 5 or 6. **[6**] For N = 4k where k > 2, A must leave either 4k - 1 or 4k - 2 from which B and C can force 4(k-1) + 1 or 4(k-2) + 2.

For N = 4k+1, A must leave either 4k or 4k-1 from which B and C can force 4(k-1)+2or 4(k-1) + 1.

For N = 4k+2, A must leave either 4k+1 or 4k from which B and C can force 4(k-1)+2or 4(k-1) + 1.

For N = 4k + 3, A must leave either 4k + 2 or 4k + 1 from which B and C can force 4(k-1)+2.

In all cases for $N \ge 11$, A will always be faced with a new value of the form 4t + 1 or 4t + 2 on his next turn eventually forcing him to N = 5 or 6 and a loss. [6]

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f'(0) exists. Suppose $\alpha_n \neq \beta_n, \forall n \in \mathbb{N}$ and both sequences $\{\alpha_n\}$ and $\{\beta_n\}$ converge to zero. Define $D_n = \frac{f(\beta_n) f(\alpha_n)}{\beta_n \alpha_n}$. Prove that $\lim_{n \to \infty} D_n = f'(0)$ under EACH of the following conditions:
 - (a) $\alpha_n < 0 < \beta_n, \ \forall n \in \mathbb{N}.$
 - (b) $0 < \alpha_n < \beta_n$ and $\frac{\beta_n}{\beta_n \alpha_n} \le M$, $\forall n \in \mathbb{N}$, for some M > 0.
 - (c) f'(x) exists and is continuous for all $x \in (-1, 1)$. [13]

Solution: Let $\epsilon > 0$ be given. Given that $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$ exists.

(a) Given that $\alpha_n < 0 < \beta_n$, $\forall n \in \mathbb{N}$. Since $\alpha_n \to 0$ and $\beta_n \to 0$, we have

$$f'(0) = \lim_{n \to \infty} \frac{f(\alpha_n) - f(0)}{\alpha_n} \text{ and } f'(0) = \lim_{n \to \infty} \frac{f(\beta_n) - f(0)}{\beta_n}.$$
There exist $n_1, n_2 \in \mathbb{N}$ such that $|f(\alpha_n) - f(0) - \alpha_n f'(0)| < |\alpha_n|\epsilon = -\alpha_n\epsilon$, $\forall n \ge n_1$ and $|f(\beta_n) - f(0) - \beta_n f'(0)| < |\beta_n|\epsilon = \beta_n\epsilon$, $\forall n \ge n_2.$
Let $n_0 = \max\{n_1, n_2\}$. Then $\forall n \ge n_0$, we get
$$|f(\beta_n) - f(\alpha_n) - (\beta_n - \alpha_n)f'(0)| \le |f(\beta_n) - f(0) - \beta_n f'(0)| + |f(\alpha_n) - f(0) - \alpha_n f'(0)| < (\beta_n - \alpha_n)\epsilon.$$
Thus $|\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} - f'(0)| < \epsilon, \quad \forall n \ge n_0.$
Hence $\lim_{n \to \infty} D_n = f'(0).$
[4]

(b) Given that $0 < \alpha_n < \beta_n$ and $\frac{\beta_n}{\beta_n - \alpha_n} \le M$, $\forall n \in \mathbb{N}$, for some M > 0. Since $\alpha_n < \beta_n$, observe that $\frac{\alpha_n}{\beta_n - \alpha_n} \le M$, $\forall n \in \mathbb{N}$. Similar to part (a), there exist $n_1, n_2 \in \mathbb{N}$ such that $|f(\alpha_n) - f(0) - \alpha_n f'(0)| < |\alpha_n|\epsilon = \alpha_n\epsilon, \forall n \ge n_1$ and $|f(\beta_n) - f(0) - \beta_n f'(0)| < |\beta_n|\epsilon = \beta_n\epsilon, \forall n \ge n_2$. Let $n_0 = \max\{n_1, n_2\}$. Then $\forall n \ge n_0$, we get $|\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} - f'(0)|$ $= |\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} - (\frac{\beta_n - \alpha_n}{\beta_n - \alpha_n})f'(0)|$ $= |\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} - \frac{\beta_n f'(0)}{\beta_n - \alpha_n} + \frac{\alpha_n f'(0)}{\beta_n - \alpha_n}|$ $= |(\frac{f(\beta_n) - f(0) - \beta_n f'(0)}{\beta_n - \alpha_n}) - (\frac{f(\alpha_n) - f(0) - \alpha_n f'(0)}{\beta_n - \alpha_n})|$ $\le |\frac{f(\beta_n) - f(0) - \beta_n f'(0)}{\beta_n - \alpha_n}| + |\frac{f(\alpha_n) - f(0) - \alpha_n f'(0)}{\beta_n - \alpha_n}|$ $< (\frac{\beta_n}{\beta_n - \alpha_n})\epsilon + (\frac{\alpha_n}{\beta_n - \alpha_n})\epsilon \le 2M\epsilon.$ Hence $\lim_{n \to \infty} D_n = f'(0).$ [5]

(c) Given that f'(x) exists and is continuous for all $x \in (-1, 1)$.

By Lagrange's Mean Value Theorem, for every positive integer n, there exists c_n between

 $\begin{aligned} \alpha_n & \text{and } \beta_n \text{ such that} \\ D_n &= \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = f'(c_n). \\ \text{Since } \alpha_n &\to 0 \text{ and } \beta_n \to 0, \quad c_n \to 0. \text{ It is given that } f'(x) \text{ is continuous.} \\ \text{Therefore } \lim_{n \to \infty} f'(c_n) &= f'(0). \\ \text{Hence } \lim_{n \to \infty} D_n &= f'(0). \end{aligned}$ $\begin{aligned} \text{[4]}$

Second method for (a), (b). Let g(x) = f(x) - f(0) - xf'(0) on \mathbb{R} . Then g(0) = 0and $g'(0) = \lim_{x \to 0} \frac{g(x)}{x} = \lim_{x \to 0} \left[\frac{f(x) - f(0)}{x} - f'(0) \right] = 0$. Let $E_n = \frac{g(\beta_n) - g(\alpha_n)}{\beta_n - \alpha_n}$. Then $E_n = D_n - f'(0)$.

(a) Let $\alpha_n < 0 < \beta_n$. Then $0 < -\alpha_n < \beta_n - \alpha_n$. Hence $0 < \frac{-\alpha_n}{\beta_n - \alpha_n} < 1$. Also, here $\beta_n - \alpha_n > \beta_n$ so that $0 < \frac{\beta_n}{\beta_n - \alpha_n} < 1$. Hence

 $\lim_{n \to \infty} E_n = \lim_{n \to \infty} \frac{g(\beta_n)}{\beta_n} \left(\frac{\beta_n}{\beta_n - \alpha_n}\right) + \lim_{n \to \infty} \frac{g(\alpha_n)}{\alpha_n} \left(\frac{-\alpha_n}{\beta_n - \alpha_n}\right) = 0,$ as the sequences in brackets are both bounded and q'(0) = 0.

[4]

(b) Let
$$0 < \alpha_n < \beta_n$$
 and $0 < \frac{\beta_n}{\beta_n - \alpha_n} < M$. Then $\beta_n - \alpha_n > 0$ and so

$$0 < \frac{\alpha_n}{\beta_n - \alpha_n} < \frac{\beta_n}{\beta_n - \alpha_n} < M. \text{ Hence}$$
$$\lim_{n \to \infty} E_n = \lim_{n \to \infty} \frac{g(\beta_n)}{\beta_n} \left(\frac{\beta_n}{\beta_n - \alpha_n}\right) - \lim_{n \to \infty} \frac{g(\alpha_n)}{\alpha_n} \left(\frac{\alpha_n}{\beta_n - \alpha_n}\right) = 0, \text{ as in (a).}$$
[5]

3. Let $f(x) = x^5$. For $x_1 > 0$, let $P_1 = (x_1, f(x_1))$. Draw a tangent at the point P_1 and let it meet the graph again at point P_2 . Then draw a tangent at P_2 and so on. Show that the ratio $\frac{A(\triangle P_n P_{n+1} P_{n+2})}{A(\triangle P_{n+1} P_{n+2} P_{n+3})}$ is constant. [12]

Solution: Let $f(x) = x^5$. For $x_1 > 0$, let $P_1 = (x_1, f(x_1))$. Draw a tangent at the point P_1 and let it meet the graph again at point P_2 . Recursively P_{n+1} is defined. We now try to calculate P_2 in terms of P_1 . Tangent at P_1 is given by $y - y_1 = 5x_1^4(x - x_1)$ i.e. $y = 5x_1^4x - 4x_1^5$. This cuts the curve $y = x^5$ at $x = x_2$, $x_2 \neq x_1$. Hence

$$x_2^5 - 5x_1^4x_2 + 4x_1^5 = 0.$$

This is a homogeneous equation in x_1, x_2 . So put $x_2 = kx_1$, $k \neq 1$, then $x_1^5k^5 - 5kx_1^5 + 4x_1^5 = 0$. This implies $k^5 - 5k + 4 = 0$ i.e. $(k - 1)^2(k^3 + 2k^2 + 3k + 4) = 0$. Since $k \neq 1$, $k^3 + 2k^2 + 3k + 4 = 0$. Observe that this cubic equation has one real and two complex roots. $(g'(x) = 3k^2 + 4k + 3 \neq 0.)$ The real root k must be negative. [5]

If $x_3 = \ell x_2$, then by similar argument, we see that ℓ is again the above negative root kof $k^3 + 2k^2 + 3k + 4 = 0$. Thus $x_3 = kx_2 = k^2x_1$. Hence by induction, $x_{n+1} = k^n x_1$ for all $n \ge 1$. We now calculate $A(\wedge P, P, \dots, P, \dots)$ [2]

1

We now calculate
$$A(\Delta P_n P_{n+1} P_{n+2})$$

 $\frac{1}{1} \begin{pmatrix} x_n & x_r^T \\ x_n & x_r^T \end{pmatrix}$

$$A(\triangle P_n P_{n+1} P_{n+2}) = \frac{1}{2} \det \begin{pmatrix} x_{n+1} & x_{n+1}^{5n} & 1\\ x_{n+2} & x_{n+2}^{5n} & 1 \end{pmatrix}$$
$$= \frac{1}{2} \det \begin{pmatrix} k^{n-1}x_1 & k^{5n-5}x_1^{5n} & 1\\ k^n x_1 & k^{5n}x_1^{5n} & 1\\ k^{n+1}x_1 & k^{5n+5}x_1^{5n} & 1 \end{pmatrix}$$

$$= \frac{k^{n-1}x_1k^{5n-5}x_1^5}{2} \det \begin{pmatrix} 1 & 1 & 1 \\ k & k^5 & 1 \\ k^2 & k^{10} & 1 \end{pmatrix}$$

$$= k^{6n-6}x_1^6 D, \text{ where } D = \frac{1}{2} \det \begin{pmatrix} 1 & 1 & 1 \\ k & k^5 & 1 \\ k^2 & k^{10} & 1 \end{pmatrix} \neq 0 \text{ since } k \neq -1.$$

Then $A(\triangle P_{n+1}P_{n+2}P_{n+3}) = k^{6n}x_1^6 D.$
Hence the ratio $\frac{A(\triangle P_n P_{n+1}P_{n+2})}{A(\triangle P_{n+1}P_{n+2}P_{n+3})} = \frac{1}{k^6}$ is constant. [5]

4. Let p(x) be a polynomial with positive integer coefficients. You can ask the question: What is p(n) for any positive integer n? What is the minimum number of questions to be asked to determine p(x) completely? Justify. [13]

Solution: The minimum number of questions needed is 2. For this, let p(x) be a polynomial with positive integer coefficients say, $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_kx^k$. We can ask the question: what is p(1)? Let p(1) = N. [3]

Here $N = a_0 + a_1 + a_2 + \dots + a_k > a_i$, $\forall i$ and N is a known number.

Also, what is p(N)? So $p(N) = a_0 + a_1N + a_2N^2 + \dots + a_kN^k$ is a known number. [4] Now express p(N) to base N, then i^{th} digit gives a_i , $\forall i$ because $a_i < N$, $\forall i$. Thus p(x) is determined. [6]

Note that asking only one question i.e. asking for the value p(n) for a particular choice of n, is not sufficient to determine the polynomial p(x).

Example. Suppose p(1) = 9 and p(9) = 193. Now we express 193 to base 9 :

$$193 = 21(9) + 4$$
, $21 = 2(9) + 3$, $2 = 0(9) + 2$.

So the remainders are, starting with the last, 2, 3, 4. So $193 = 2(9^2) + 3(9) + 4(9^0) = (234)_9$. So $a_2 = 2$, $a_1 = 3$, $a_0 = 4$ and $p(x) = 4 + 3x + 2x^2$.