MADHAVA MATHEMATICS COMPETITION, December 2015
Solutions and Scheme of Marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50
marks.

Part 1

N.B. Each question in Part I carries 2 marks.

1.

. Suppose p,q,r,s are 1,2,3,4 in some order. Let x =

. Let f(z) = {

Let A(t) denote the area bounded by the curve y = el the X— axis and the straight
lines z = —t,z = t, then tlim A(t) is
—00
A)2 B)1 C)1/2 D)e.
Solution: (A)
0 pre” 0
As f(z) = e~ 1# is an even function, A(t) = 2/ / 1 dydx = 2/ e“dr = 2(® — ™)
-t Jo

—t

t
—2ast—oo. OR A(t):2/ e dr=-2("'—1)—=2ast— occ.
0

. How many triples of real numbers (z,y, z) are common solutions of the equations

r+y=2, awy—22=17

A)0 B)1 C)2 D) infinitely many.

Solution: (B)

ry = 1+2% > 1sothat —4ry < —4. Hence (z—y)? = (z+y)? —4day = 4—4zxy < 4—4 = 0.
So & = y. Thus the only solutionisz =1,y =1,z =0.

. For non-negative integers x,y the function f(x,y) satisfies the relations f(z,0) = = and

flz,y+1) = f(f(x,y),y). Then which of the following is the largest?

A) £(10,15) B) f(12,13) C) f(13,12) D) f(14,11).

Solution: (D)

f(z,1) = f(f(2,0),0) = f(x,0) = x. Inductively f(x,y) = = for all integers y > 0.

1
1

P+ 1

9+—7
T+ -

We choose p, q,r, s so that x is as large as possible, then s is §

A)1 B)2 C)3 D) 4.

Solution: (C)

For z to be the largest, p,q,r, s should be min{1,2,3,4}, max{1,2,3,4}, min{2, 3},

max{2, 3} respectively. So s = 3.

3r+2% if <0
2+ 22 if x>0.
A)0 B)2 C)3 D) None of these.

Solution: (D)

fl(x) = 342z, for x < 0 and f)(z) = 32% + 2z, for > 0. So f'(0) does not exist
because f'(0) =3 # 0= f(0).

Then f”(0) is

. There are 8 teams in pro-kabaddi league. Each team plays against every other exactly

once. Suppose every game results in a win, that is, there is no draw. Let wy, w2, -+, ws
be number of wins and I1,ls, - -- ,lg be number of loses by teams 11,75, --- ,Tg, then
Awi4+-+wi=49+ B+ +13). B wi+-+wi=03+ +I2

C) w?+ - +wd=49— (3+---+12). D) None of these.

Solution: (B)

Note that w; +1; = 7 for all i and > w; — > 1; = > (w; — ;) = 0. Then Y w? — Y I? =
Z(wi + ll)(wz -+ lz) = 72(11]1' — ll) =0.



7.

10.

N.B.

The remainder when m+n is divided by 12 is 8, and the remainder when m —n is divided
by 12 is 6. If m > n, then the remainder when mn divided by 6 is

A)1 B)2 C)3 D)4.

Solution: (A)

Note that m +n = 8(mod 12) and m — n = 6(mod 12). Adding these congruences, we
get, 2m = 2(mod 12). This implies m = 1(mod 6). Similarly by subtracting, we get, n = 1(
mod 6). Thus mn = 1(mod 6).

1 2 ...on
n+1 n—+ 2 e 2n

. Let A= . ) . Select any entry and call it x1. Delete
m—1n+1 (n—1)n+2 ... n?

row and column containing z1 to get an (n — 1) x (n — 1) matrix. Then select any entry
from the remaining entries and call it x5. Delete row and column containing xo to get
(n —2) x (n — 2) matrix. Perform n such steps. Then x; + xo + -+ + x,, is

1 41
A)n B) n(n+1) C) nin 2+ ) D) None of these.
Solution: (C)

1 2 3 4
144 244 344 4+4
148 248 348 448
1412 2412 3412 4+12
a+ (b+4)+ (c+8) + (d + 12) where a,b,c,d is a permutation of 1,2,3,4. So S =
a+b+c+d+24 =104 24 = 34. Thus S is the same for all stated choices of x1, ..., x,.
Hence taking z;’s as the main diagonal elements,

S=14+n+2)+2n+3)+...+[n(n—-1)+n]
=nm+2n+...+nn—-1)]+[1+2+... +n]
n(nfl)n+n(n+1) n(n? +1)

2 2 2

Forn=4, A= . Note that S = a1 + 29 + 23 + 24 =

. The maximum of the areas of the rectangles inscribed in the region bounded by the curve

y =3 — 22 and X —axis is

A)4 B)1 C)3 D) 2.

Solution: (A)

By symmetry, let the base of the rectangle be segment with ends —x,x and height y.
Then area A(z) = 2xy = 22(3 — 2?) = 62 — 22° and A'(z) = 6 — 622, A'(x) = —12z. So
A(z) =0at 22 =1ie z =1;and A”(1) = —12 < 0. So A(z) is maximum at z = 1
with maximum value A(1) = 4.

How many factors of 293652 are perfect squares?

A)24 B)20 C)30 D) 36.

Solution: (A)

Factors that are perfect squares will be of the form d = 2%35¢ where a = 0,2 or 4,
b=20,2,4or 6, and ¢ = 0 or 2. Thus there are 3 X 4 x 2 possible divisors that are perfect
squares.

Part 11
Each question in Part II carries 6 marks.

. How many 15—digit palindromes are there in each of which the product of the non-

zero digits is 36 and the sum of the digits is equal to 157 (A string of digits is called a
palindrome if it reads the same forwards and backwards. For example 04340, 6411146.)
Solution: The first 7 digits completely determine the number. Since the sum of digits is
15, the 8" digit is odd and is a factor of 36. Note that the product of all non-zero digits
( except the digit in the 8 place ) is a square using the definition of palindrome. Hence



the 8" digit cannot be 3 because the product in that case is 12. So the 8" digit is either
1or9. (2]
Case 1: If the 8" digit is 1 then the digits in first seven places can either be

a permutation of 1,1,2,3,0,0,0 or 1,6,0,0,0,0,0 because these are the only possibilities with
sum 7 and product 6.

Number of permutations of 1,1,2,3,0,0,0 is — 2‘3'

Number of permutations of 1,6,0,0,0,0,0 is ; [2]

Case 2: If the 8 digit is 9 then the digits in first seven places will be a permutation of
1,2,0,0,0,0,0 because this is the only possibility with sum 3 and product 2..
|

7!
Number of permutations of 1,2,0,0,0,0,0 is —.

5!
Thus the number of requn"ed 15 digit palindromes with product of nonzero digits 36 and
£ dicits 15 i o7l o
sum of digits 15 is 2'—3'4-5'—%5 (2]

2. Let H be a finite set of distinct positive integers none of which has a prime factor greater
than 3. Show that the sum of the reciprocals of the elements of H is smaller than 3. Find
two different such sets with sum of the reciprocals equal to 2.5.

Solution: The given condition implies that every n € H, n is of the form n = 2%3°,
a, 8 > 0. Since H is finite, 3k € N such that a < k, 8 < k for each n € H. This implies

1 P&
Zn§1+;2i+§3j ZZngj

neH 1=1 j5=1

P & 1 k L i 1
1= j= Z:

Jj=1

<.

R N I 3]
- 2 2k 3 3k
1- o 1- 5 1 1 3
2k+1 3k+1
_ ~—(—)=2(2) =3. 1
1
L = . — =2.5.
ot H ={1,2,3,4,6,8,12,24}. Then ) S =25 1]
ncH
Let H = {1,2,3,4,6,8,12,36,72}. Then Y 1 95 1]
Y ) ) ) ) ) ) ) n

neH
Any other correct choices for H, also carries one mark each.

3. Let A be an n x n matrix with real entries such that each row sum is equal to one. Find
the sum of all entries of A2015,
Solution: Let A be an n X n matrix with real entries such that each row sum is equal
to one. This implies

1 1
1 1
Al | =1.1. [3]
1 1
By repeated use of this, we get
1 1
1 1
amis o] 2
1 1

So each row sum of A21° is equal to one. Hence the sum of all entries of A201% is n. [1]

4. Let f: R — R be a differentiable function such that f(0) =0, f'(z) > f(x) for all z € R.



Prove that f(x) > 0 for all > 0.
f(z)

Solution: By data, f(0) > f(0) = 0. So lir()gl+— > 0. Hence 3 § > 0, such that
T— X

f(z) > 0 for all z € (0,6). [1]
Now if there exists g > 0 such that f(xg) < 0, then by intermediate value property,
there exists 1 > 0 such that f(z1) =0. Let c=inf A, A={z|z>0, f(z)=0}. [1]
Clearly, as f is continuous and c¢ is inf A, f(x) > 0, for x € [0,¢]. So ¢ > 4. By the
property of infimum, there exists a sequence {z,} of points which converges to ¢, and

xn > 0 and f(z,) = 0. By continuity, f(c) = li_)m f(zn) =0. 1]
n—oo

This implies that in (0,¢), f(z) > 0 and f(0) = f(¢) = 0. Hence by Rolle’s theorem,

1/ (b) =0 for some b, 0 < b < c. [2]

But then f(b) < f’(b) = 0 which is a contradiction. Hence f(z) > 0 for all > 0. [1]

Second method. As before, 3 § > 0, such that f(z) > 0 for all z € (0,0). [1]
Let S={z | f(t) >0fort € (0,z).} Then ¢ € S so that S is non-empty. Let m = sup S.
If m = oo, we are done. Let, if possible, m < co. Now f(z) > 0, x € (0, m). By continuity,
Fm) = Tim f(t) > 0. 2]
So for all z € [0,m], f'(x) > f(x) > 0 so that f/(x) > 0. Hence f is strictly increasing
on [0,m], in particular, f(m) > f(m/2) > 0. Since f(m) > 0, by continuity, there exists
91 > 0 such that f(x) > 0 in [m,m + 61). So, f(x) > 0, for z € (0,m + d1). Thus
m + 01 € S, which is a contradiction since m = sup S. Hence m = co. [3]

. Give an example of a function which is continuous on [0, 1], differentiable on (0,1) and
not differentiable at the end points. Justify.

Solution: f(z) =+vz — % for z € [0,11]. ) [3]
Then f’(z) exists on (0,1), f'(z) = W [1]
But £/(0) = £/(1) = oo. 2]

Note: Any other correct example with justification will carry full marks.

Part III

. There are some marbles in a bowl. A, B and C take turns removing one or two marbles
from the bowl, with A going first, then B, then C, then A again and so on. The player
who takes the last marble from the bowl is the loser and the other two players are the
winners. If the game starts with /N marbles in the bowl, for what values of N can B and
C work together and force A to lose? [12]

Solution: We claim that B and C can force A to lose for all N except

N =2;3;4;7; 0or8.

At N = 2, A leaves 1.

At N =3 or 4, A leaves 2.

At N = 7 or 8, A leaves 6 after which B and C must leave 2, 3 or 4.

For N = 5 or 6, regardless of what A takes, B and C can work it so that when A’s turn
arrives there is only one marble left.

For N = 9 or 10, A must leave 7, 8 or 9 from which B and C can force 5 or 6. [6]
For N = 4k where k > 2, A must leave either 4k — 1 or 4k — 2 from which B and C can
force 4(k—1)+ 1 or 4(k—2) + 2.

For N = 4k+1, A must leave either 4k or 4k —1 from which B and C can force 4(k—1)+2

or 4(k —1)+1.
For N = 4k +2, A must leave either 4k+1 or 4k from which B and C can force 4(k—1)+2
or4(k—1)+1.

For N = 4k + 3, A must leave either 4k + 2 or 4k + 1 from which B and C can force
4k —1)+2.



In all cases for N > 11, A will always be faced with a new value of the form 4t + 1 or

4t + 2 on his next turn eventually forcing him to N = 5 or 6 and a loss.

(6]

. Let f: R — R be a function such that f/(0) exists. Suppose a,, # ,,Vn € N and both

f(Bn) — f(an)'

Bn — an
Prove that li_)rn D,, = f(0) under EACH of the following conditions:
n—,oo

sequences {ay} and {f,} converge to zero. Define D,, =

(a) ap <0< By, VneN.
B

n — Qn

(c) f'(z) exists and is continuous for all z € (—1,1).

(b) 0 < oy, < By, and

< M, ¥Yn €N, for some M > 0.

Solution: Let € > 0 be given. Given that f'(0) = lim

x—0

exists.

f(z) = £(0)

(a) Given that a,, <0 < f3,,, ¥n € N. Since a,, — 0 and 5, — 0, we have

f(an) — f(O) and f/(O) — lim f(/Bn) — f(O) )

ap, n—00 Bn

f'(0) = lim

[13]

There exist ny,ny € N such that |f(ay) — f(0) — an f'(0)| < |anle = —ane, Vn > nq and

[f(Bn) = f(0) = Buf'(0)] < [Bnle = Bre, Vn = mny.
Let ng = max{ni,n2}. Then ¥n > ng, we get
|f(/3n) - f(an) - (Bn - an)f/(0)|
< ‘f(ﬂn) - f(()) - an/((]” + |f(an) - f(O) - anf/(0)| < (5n - an)e'

Thus |M —f(0)] < €, Vn>no.
Bn — an
Hence lim D, = f'(0).
n—oo
(b) Given that 0 < «a,, < 3, and Bn < M, V¥n €N, for some M > 0.
n — On

e
Since oy, < B, observe that "_ <M, YneN.

/Bn_an

[4]

Similar to part (a), there exist n1,ng € N such that |f(a,) — f(0) — an f'(0)| < |anle =

ane, Yn>ng and |f(B,) — f(0) — Buf'(0)] < |Bnle = Bne, Yn > no.
Let ng = max{ni,n2}. Then Vn > ng, we get

f(Bn) — flan) B (ﬁn - O‘n)f/(o)|

Bn — oy Bn —

1) = flaw) _ Bud(©) | anf'(0)

Bn — an Bn — an Bn — an
_ (f(ﬁn) B f(O) — /an/(o)) o (f(an) — f(O) - anf/(o))’
B Bn — an Bn — o
< (ﬁnﬁ_nan)e + (5na—nan)€ < 2Me.

Hence lim D,, = f(0).
n—oo

(¢) Given that f’(z) exists and is continuous for all z € (—1,1).

[5]

By Lagrange’s Mean Value Theorem, for every positive integer n, there exists ¢, between



a, and 3, such that
f(Bn) = flow) _
D, = L) IR ey
o f'(en)
Since oy, — 0 and B, — 0, ¢, — 0. It is given that f’(x) is continuous.

Therefore nl;r{:o f'(cn) = £(0).

Hence nl;rx;o D, = f'(0). [4]
Second method for (a), (b). Let g(z) = f(z) — f(0) — 2f’(0) on R. Then g(0) = 0
and ¢'(0) = :1”13%@ = lim [f(x) ; 10 _ f/(O)] =0. Let E, = g(ﬁg) :i(an). Then

E, = D, — £'(0).

T x—0

(a) Let ooy < 0 < By. Then 0 < —ay, < By, — ap. Hence 0 < T < 1. Also, here
n — Qn
Brn — > B so that 0 < Bn < 1. Hence
Bn —Qp

lim B, = tim 900 (B ) gy 9l0n) ([ Zn )
n—00 n—oo [ Bn — an n—oo Bn — ap
as the sequences in brackets are both bounded and ¢'(0) = 0. [4]
(b) Let 0 < o, < B, and 0 < Bn < M. Then 8, — a,, > 0 and so

Bn — Qp
0< an < Bn < M. Hence

/Bn — Oy /Bn — Qp
: o 9(Bn) Br . glan) an B .

o= o S (G20 ) < 20 (52 ) omme

. Let f(z) = 25. For w1 > 0, let P; = (21, f(z1)). Draw a tangent at the point P; and let

it meet the graph again at point P». Then draw a tangent at P» and so on. Show that
A(AP, Py Pryo)

A(APy 1 PyyoPry3)

the ratio is constant. [12]

Solution: Let f(x) = z®°. For z1 > 0, let P; = (x1, f(71)). Draw a tangent at the point
P, and let it meet the graph again at point P». Recursively P,y is defined. We now
try to calculate P, in terms of P;. Tangent at Pj is given by y — y1 = 5xf(z — x1) i.e.
Yy = 51:‘1% — 4x3. This cuts the curve y = 2° at x = xa, 2 # x1. Hence

x5 — bajxg + dat = 0.

This is a homogeneous equation in x1,rs. So put xe = kx1, k # 1, then 23k® — 5ka? +
423 = 0. This implies k> — 5k +4 = 0 ie. (k — 1)2(k3 + 2k% + 3k + 4) = 0. Since
k#1, k®+2k®+3k+4 = 0. Observe that this cubic equation has one real and two
complex roots. (¢'(z) = 3k? 4+ 4k + 3 # 0.) The real root k must be negative. [5]

If z3 = fxs, then by similar argument, we see that £ is again the above negative root k
of k3 +2k?>+3k+4 = 0. Thus z3 = kzy = k%x;. Hence by induction, Tpt1 = k™ for all
n>1. 2]
We now calculate A(AP, Pyt1Pn+2)
1 Tn 01
A(AP,Ppi1Pri2) = 5 det [ Znp1 a2, 1
Ttz Ty 1
. knflxl k5n75x€13 1
= _—det | k"2 Eray 1
2 kn+1x1 k5n+5$? 1



1 1
kn—l k5n—5 5
5 MY Mget [ kK

1
1
2 2RO 1
1 1 1 1
=k 628D, where D = ~det [ k& k° 1| # 0 since k # —1.
k? k1O 1
Then A(APy,1PnyoPyis) = k52D,
A(AP, P11 P, 1
Hence the ratio (AP PoiaPoia) L is constant. [5]

A(APpy1ProyoPrys) kS

. Let p(x) be a polynomial with positive integer coefficients. You can ask the question:
What is p(n) for any positive integer n? What is the minimum number of questions to
be asked to determine p(x) completely? Justify. [13]

Solution: The minimum number of questions needed is 2. For this, let p(z) be a
polynomial with positive integer coefficients say, p(z) = ag + a12 + agz? 4 - - - + apz®. We
can ask the question: what is p(1)? Let p(1) = N. (3]

Here N =ag+ a1+ a2+ -4+ ap > a;, Vi and N is a known number.
Also, what is p(N)? So p(N) = ag + a1 N + agN? + - - - + ax N* is a known number. [4]

Now express p(N) to base N, then i*" digit gives a;, Vi because a; < N, Vi. Thus p(z) is
determined. [6]
Note that asking only one question i.e. asking for the value p(n) for a particular choice
of n, is not sufficient to determine the polynomial p(z).

Example. Suppose p(1) =9 and p(9) = 193. Now we express 193 to base 9 :
193 = 21(9) + 4, 21 =2(9) +3, 2=0(9) +2.

So the remainders are, starting with the last, 2,3, 4. So 193 = 2(9%)+3(9)+4(9%) = (234),.
So as = 2,a1 = 3,a9 = 4 and p(z) = 4 + 3z + 222




