
Solutions to Madhava Mathematics Competition 2011
Part I

N.B. Each question in Part I carries 2 marks.

1. If N = 1! + 2! + 3! + · · ·+ 2011!, then the digit in the units place of the
number N is
(a) 1 (b) 3 (c) 0 (d) 9.
Answer : (b)

Note that 5! ≡ 0(mod 10). Thus, 1! + 2! + 3! + 4! = 33 ≡ 3(mod 10).

2. The set of all points z in the complex plane satisfying z2 = |z|2 is a
(a) pair of points (b) circle (c) union of lines (d) line.
Answer : (d)

z = 0 and if z 6= 0 then zz = zz̄. Hence, z = z̄. Hence, imaginary part
of z = 0.

3. If the arithmetic mean of two numbers is 26 and their geometric mean
is 10, then the equation with these two numbers as roots is
(a) x2 + 52x+ 100 = 0 (b) x2 − 52x− 100 = 0
(c) x2 − 52x+ 100 = 0 (d) x2 + 52x− 10 = 0.
Answer : (c)

If the roots are α and β then α + β = 26 and αβ = 100.

4. All points lying inside the triangle with vertices at the points (1, 3),
(5, 0) and (−1, 2) satisfy
(a) 3x+ 2y ≥ 0 (b) 2x+ y − 13 ≥ 0
(c) 2x− 3y − 12 ≥ 0 (d) −2x+ y ≥ 0.
Answer : (a)

Substitute the coordinates of the points.

5. For n ≥ 3, let A be an n × n matrix. If rank of A is n − 2, then rank
of adjoint of A is
(a) n− 2 (b) 2 (c) 1 (d) 0.
Answer : (d)

Rank of the matrix is n−2. Hence, every (n−1)× (n−1) minor equals
0. Hence, every entry of the adjoint of A is 0.
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6. Suppose f : R → R is an odd and differentiable function. Then for
every x0 ∈ R, f ′(−x0) is equal to
(a) f ′(x0) (b) −f ′(x0) (c) 0 (d) None of these.
Answer : (a)

Use chain rule.

7. If S = {a, b, c} and the relation R on the set S is given by
R = {(a, b), (c, c)}, then R is
(a) reflexive and transitive (b) reflexive but not transitive
(c) not reflexive but transitive (d) neither reflexive nor transitive.
Answer : (c)

(b, b) /∈ R Hence, R is not reflexive. However, R is transitive.

8. Let a1 = 1, an+1 =

(
1 + n

n

)
an for n ≥ 1. Then the sequence {an} is

(a) divergent (b) decreasing (c) convergent (d) bounded.
Answer : (a)

Note that an = n for every n. Hence, < an > is an unbounded sequence.
Hence, divergent.

9. The coefficient of x2n−2 in

f(x) = (x− 1)(x+ 1)(x− 2)(x+ 2) · · · (x− n)(x+ n)

is

(a) 0 (b)
−n(n+ 1)(2n+ 1)

6
(c)

n(n+ 1)(2n+ 1)

6
(d)
−n(n+ 1)

2
.

Answer : (b)

Note that f(x) = (x2−1)(x2−22) · · · (x2−n2). Hence the coefficient of
x2n−2 is sum of squares of the numbers from 1 to n with negative sign.

10. The number of roots of g(x) = 5x4 − 4x+ 1 = 0 in [0, 1] is
(a) 0 (b) 1 (c) 2 (d) 3.
Answer : (c)

g(0) > 0 and g(1) > 0 while g(1/2) < 0. Hence, g(x) = 0 has at least
two roots. Note that g′(x) < 0 if x3 < 1/5 and g′(x) > 0 if x3 > 1/5.
Hence, the function is decreasing in (−∞, 3

√
1/5) and increasing on

( 3
√

1/5,∞). At 3
√

1/5 the function has absolute minimum.
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Part II
N.B. Each question in Part II carries 5 marks.

1. If n ≥ 3 is an integer and k is a real number, prove that n is equal to
the sum of nth powers of the roots of the equation xn − kx− 1 = 0.
Solution :
Let α1, α2, · · · , αn be the roots of the equation xn−kx−1 = 0. Therefore
αni = kαi + 1, 1 ≤ i ≤ n. [1 mark]

Therefore
n∑
i=1

αni = k

n∑
i=1

αi + n, 1 ≤ i ≤ n. [2 marks]

But as n ≥ 3,
n∑
i=1

αi = 0, since the coefficient of xn−1 is zero. Thus

n∑
i=1

αni = n. [2 marks]

2. Find all positive integers n such that (n2n − 1) is divisible by 3.
Solution : Note that 22 ≡ 1(mod 3). Hence, 22k ≡ 1(mod 3). Thus
if n is even then 2n ≡ 1(mod 3) and if n is odd then 2n ≡ 2(mod 3).
Hence, if n is even then n2n− 1 ≡ (n− 1)(mod 3) and if n is odd then
n2n − 1 ≡ 2n− 1(mod 3). 3|(n2n − 1) Hence (n− 1) ≡ 0(mod 3) if n
is even and 3|(−n− 1) if n is odd. Hence, n = 6k + 4 [2 marks]
or n = 6k + 5. [2 marks]

Further, if n = 6k + 4 or n = 6k + 5 then n|n2n − 1. [1 mark]

3. Start with the set S = {3, 4, 12}. At any stage you may perform the
following operation: Choose any two elements a, b ∈ S and replace

them by

(
3a− 4b

5

)
and

(
4a+ 3b

5

)
. Is it possible to transform the

set S into the set {4, 6, 12} by performing the above operation a finite
number of times?
Solution :

When we replace a and b by a1 =

(
3a− 4b

5

)
and b1 =

(
4a+ 3b

5

)
. The

set {a, b, c} changes to {a1 =

(
3a− 4b

5

)
, b1 =

(
4a+ 3b

5

)
, c1 = c}.

The sum of squares of the elements of this set is
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(
3a− 4b

5

)2

+

(
4a+ 3b

5

)2

+ c2 = a2 + b2 + c2. Thus the new set

{a1, b1, c1} satisfies the condition a2 + b2 + c2 = a2
1 + b21 + c21. Now

the set {3, 4, 12} has sum of squares equal to 169, where as the new set
{4, 6, 12} has sum of squares equal to 196. The two sums are different.

Hence it is not possible to transform the set {3, 4, 5} to {4, 6, 12}. [5
marks]

Note: If the answer is no by trial and error then give 1 mark.

4. Let a < b. Let f be a continuous function on [a, b] and differentiable
on (a, b). Let α be a real number. If f(a) = f(b) = 0, show that there
exists x0 ∈ (a, b) such that αf(x0) + f ′(x0) = 0.
Solution :
Define g(x) = eαxf(x). Then g′(x) = eαx[αf(x) + f ′(x)]. [2 marks]

As f(a) = f(b) = 0, we have g(a) = g(b) = 0. By Rolle’s theorem, there
exists x0 ∈ (a, b) such that g′(x0) = 0. This implies αf(x0)+f ′(x0) = 0.
[3 marks]

Part III
N.B. Each question in Part III carries 12 marks.

1. Let Mn be the n×n matrix with all 1’s along the main diagonal, directly
above the main diagonal and directly below the main diagonal and 0’s
everywhere else. For example,

M3 =

1 1 0
1 1 1
0 1 1

 , M4 =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 . Let dn = detMn.

(a) Find d1, d2, d3, d4. [If all are done 2 marks]
(b) Find a formula expressing dn in terms of dn−1 and dn−2, for all

n ≥ 3. [3 for expressing it and 3 for the proof.]
(c) Find d100. [4 marks]
Solution :

• Note, M1 = 1, so det(M1) = d1 = 1.

• M2 =

(
1 1
1 1

)
, so clearly det(M2) = d2 = 0.
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• Next, M3 =

1 1 0
1 1 1
0 1 1

 , so clearly det(M3) = 1(det(M2)) −

1(1) = d3 = −1.

• Note M4 =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 , det(M4) = 1(det(M3))−1(det(M2)) =

d4 = −1.

(Some students will realize induction here and will straightaway
go to general formula).

• Let Mn =



1 1 0 0 0 · · · 0
1 1 1 0 0 · · · 0
0 1 1 1 0 · · · 0
0 0 1 1 1 · · · 0
0 0 · · · 1 1 · · · 0
0 0 · · · 0 1 · · · 1
0 0 · · · 0 0 · · · 1


.

Then, we claim: det(Mn) = 1(det(Mn−1))− 1(det(Mn−2)) i.e.,

det(Mn) = det(Mn−1)− det(Mn−2).

• The proof follows from the row-expansion formula for the deter-
minant.

Expanding along the first row, in Mn, we get:

det(Mn) = 1(det(Mn−1))− 1(detK),

where K is the following (n− 1)× (n− 1) matrix:

K =


1 1 0 0 · · · 0
0 1 1 0 · · · 0
0 1 1 1 · · · 0
0 · · · 1 1 · · · 0
0 · · · 0 1 · · · 1
0 · · · 0 0 · · · 1

 .

Again expanding along the first row, note that

(detK) = 1(det(Mn−2))− 1(detK ′),
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where K ′ =


0 1 0 · · · 0
0 1 1 · · · 0
0 1 1 · · · 0
0 0 1 · · · 1
0 0 0 · · · 1

 .

Clearly, detK ′ = 0, as all the entries in one column of K ′ are 0.
This proves the claim.

• Now, it is easy to find that:

d5 = d4 − d3 = (−1)− (−1) = 0,

d6 = d5 − d4 = 0− (−1) = 1,

d7 = d6 − d5 = 1− 0 = 1,

d8 = d7 − d6 = 1− 1 = 0.

• In fact, finding a few more terms makes the pattern obvious by
looking at the following table:

d1 = 1 = d7

d2 = 0 = d8

d3 = −1 = d9

d4 = −1 = d10

d5 = 0 = d11

d6 = 1 = d12

• Thus, we can calculate dn for any n by the following formula:

dn = 1, if n ≡ 0, 1 (mod 6),

dn = 0, if n ≡ 2, 5 (mod 6),

dn = −1, if n ≡ 3, 4 (mod 6).

2. Let p(x) = x2n − 2x2n−1 + 3x2n−2 − 4x2n−3 + · · · − 2nx+ (2n+ 1).
Show that the polynomial p(x) has no real root.
Solution :
If x ≤ 0 then p(x) > 0. [2 marks]
Let x > 0.
p(x) = x2n − 2x2n−1 + 3x2n−2 − 4x2n−3 + · · · − 2nx+ (2n+ 1).
xp(x) = x2n+1 − 2x2n + 3x2n−1 − 4x2n−2 + · · · − 2nx2 + (2n+ 1)x.
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xp(x) + p(x) = x2n+1 − x2n + x2n−1 − x2n−2 + · · ·+ x+ (2n+ 1).

(1 + x)p(x) = x

(
1 + x2n+1

1 + x

)
+ (2n+ 1).

⇒ p(x) > 0 for x > 0. [10 marks]

Note: If done for an interval then maximum 2 marks.

3. Let f(x) = x10 + a1x
9 + a2x

8 + · · ·+ a10 where ai’s are integers.

If all the roots of f(x) are from the set {1, 2, 3}, determine the number
of such polynomials. Further, if g(x) is the sum of all such polynomials

f(x), then show that the constant term of g(x) is
1

2
(312 + 1)− 212.

Solution :
Note that f(x) = (x − 1)a(x − 2)b(x − 3)c, where a + b + c = 10 and
a, b, c ≥ 0 are integers. [2 marks]

If c = 0 then there are 11 solutions. If c = 1 then there are 10 solutions.
If c = 2 then there are 9 solutions. If c = 3 then there are 8 solutions
and so on. Thus for every c there are 11− c solutions. Hence, the total
number of solutions is 1 + 2 + · · · + 11 = 66. Hence, there are 66 such
polynomials. [4 marks]

The constant term of g(x) i.e a10 equals∑
a+b+c=10

1a2b3c [2 marks]

= 310 + 39(2 + 1) + 38(22 + 2(1) + 12) + · · ·+ 30(210 + 29 + · · ·+ 1)

= 310(2− 1) + 39(22 − 1)) + 38(23 − 1) + · · ·+ 30(211 − 1)

= 3112(1 +
2

3
+ · · ·+

(
2

3

)10

)− 1

2
(311 − 1)

= 3112(1− (
2

3
)11)− 1

2
(311 − 1)

= 2(311 − 211)− 1

2
(311 − 1) [4 marks]

4. Let f : R→ R be a differentiable function such that

f(x+ h)− f(x) = hf ′(x+
1

2
h),
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for all real x and h. Prove that f is a polynomial of degree at most 2.
Solution :
From the given condition, we have f(x+h)−f(x−h) = 2hf ′(x), ∀x, h.
Therefore putting x = 0, we get f(h) − f(h) = 2hf ′(0), ∀h. Differen-
tiating with respect to h, f ′(h) + f ′(−h) = 2f ′(0), ∀h.
Now define g(x) = f ′(x)− f ′(0). Then g(0) = 0 and g(−x) = −g(x).
Again f ′(a + h) + f ′(a− h) = 2f ′(a). Putting a + h = x, a− h = y in

above expression, we get f ′(x) + f ′(y) = 2f ′(
x+ y

2
) (*)

and putting h = a, we get f ′(2a) + f ′(0) = 2f ′(a).

Therefore f ′(a) + f ′(0) = 2f ′(
a

2
). (**)

From (*) f ′(x) + f ′(y) = 2f ′(
x+ y

2
)

From (**) f ′(x) + f ′(y) = f ′(x+ y) + f ′(0).
g(x+ y) = f ′(x+ y)− f ′(0) = f ′(x) + f ′(y)− 2f ′(0) = [f ′(x)− f ′(0)] +
[f ′(y)− f ′(0)] = g(x) + g(y).

Therefore g(kx) = kg(x), g(
x

n
) =

1

n
g(x), g(

m

n
x) =

m

n
g(x).

Now g is continuous, g(αx) = αg(x), ∀α ∈ R. Therefore g is linear.
Therefore f ′(x) − f ′(0) = ax. Therefore f ′(x) = f ′(0) + ax. Therefore
f(x) = a

2
x2 + f ′(0)x+ c.

defining the function g is crucial hence 8 marks for that and then 4
marks for showing that it is linear.

5. (a) Let n = 9. Express n as a sum of positive integers such that their
product is maximum. Find the value of the maximum product.
(b) Repeat part (a) for n = 10 and n = 11.
(c) Given a positive integer n ≥ 6, express n as a sum of positive
integers such that their product is maximum. Find the value of the
maximum product.
Solution :
(a) 9=3+3+3.
(b) 10=2+2+3+3, 11=2+3+3+3.

Note that expressing 9, 10 and 11 carries 1 mark each.

(c) Let n ≥ 5. Note that n = (n− 3) + 3 and n < 3(n− 3). [6 marks]

Hence, we write n as sum of 3’s till we get a number < 5. If the resulting
number is 4, then we express it as 2 + 2. If it is 2 or 3 then keep it as
it is. [3 marks]

8



9


