Solutions to Madhava Mathematics Competition 2011 Part I

N.B. Each question in Part I carries 2 marks.

- If N = 1! + 2! + 3! + · · · + 2011!, then the digit in the units place of the number N is

 (a) 1
 (b) 3
 (c) 0
 (d) 9.

 Answer : (b)

 Note that 5! ≡ 0 (mod 10). Thus, 1! + 2! + 3! + 4! = 33 ≡ 3 (mod 10).
- 2. The set of all points z in the complex plane satisfying z² = |z|² is a
 (a) pair of points (b) circle (c) union of lines (d) line.
 Answer : (d)

z = 0 and if $z \neq 0$ then $zz = z\overline{z}$. Hence, $z = \overline{z}$. Hence, imaginary part of z = 0.

3. If the arithmetic mean of two numbers is 26 and their geometric mean is 10, then the equation with these two numbers as roots is (a) $x^2 + 52x + 100 = 0$ (b) $x^2 - 52x - 100 = 0$ (c) $x^2 - 52x + 100 = 0$ (d) $x^2 + 52x - 10 = 0$. Answer : (c)

If the roots are α and β then $\alpha + \beta = 26$ and $\alpha\beta = 100$.

4. All points lying inside the triangle with vertices at the points (1,3), (5,0) and (-1,2) satisfy (a) $3x + 2y \ge 0$ (b) $2x + y - 13 \ge 0$ (c) $2x - 3y - 12 \ge 0$ (d) $-2x + y \ge 0$. Answer : (a)

Substitute the coordinates of the points.

5. For $n \ge 3$, let A be an $n \times n$ matrix. If rank of A is n - 2, then rank of adjoint of A is (a) n - 2 (b) 2 (c) 1 (d) 0. Answer: (d)

Rank of the matrix is n-2. Hence, every $(n-1) \times (n-1)$ minor equals 0. Hence, every entry of the adjoint of A is 0.

- 6. Suppose f : R → R is an odd and differentiable function. Then for every x₀ ∈ R, f'(-x₀) is equal to
 (a) f'(x₀)
 (b) -f'(x₀)
 (c) 0
 (d) None of these.
 Answer : (a)
 Use chain rule.
- 7. If S = {a, b, c} and the relation R on the set S is given by R = {(a, b), (c, c)}, then R is
 (a) reflexive and transitive
 (b) reflexive but not transitive
 (c) not reflexive but transitive
 (d) neither reflexive nor transitive. Answer : (c)

 $(b,b) \notin R$ Hence, R is not reflexive. However, R is transitive.

8. Let $a_1 = 1$, $a_{n+1} = \left(\frac{1+n}{n}\right)a_n$ for $n \ge 1$. Then the sequence $\{a_n\}$ is (a) divergent (b) decreasing (c) convergent (d) bounded. Answer : (a)

Note that $a_n = n$ for every n. Hence, $\langle a_n \rangle$ is an unbounded sequence. Hence, divergent.

9. The coefficient of x^{2n-2} in

$$f(x) = (x-1)(x+1)(x-2)(x+2)\cdots(x-n)(x+n)$$

is

(a) 0 (b)
$$\frac{-n(n+1)(2n+1)}{6}$$
 (c) $\frac{n(n+1)(2n+1)}{6}$ (d) $\frac{-n(n+1)}{2}$.
Answer : (b)

Note that $f(x) = (x^2 - 1)(x^2 - 2^2) \cdots (x^2 - n^2)$. Hence the coefficient of x^{2n-2} is sum of squares of the numbers from 1 to n with negative sign.

10. The number of roots of $g(x) = 5x^4 - 4x + 1 = 0$ in [0, 1] is (a) 0 (b) 1 (c) 2 (d) 3. Answer : (c)

g(0) > 0 and g(1) > 0 while g(1/2) < 0. Hence, g(x) = 0 has at least two roots. Note that g'(x) < 0 if $x^3 < 1/5$ and g'(x) > 0 if $x^3 > 1/5$. Hence, the function is decreasing in $(-\infty, \sqrt[3]{1/5})$ and increasing on $(\sqrt[3]{1/5}, \infty)$. At $\sqrt[3]{1/5}$ the function has absolute minimum.

Part II

N.B. Each question in Part II carries 5 marks.

1. If $n \ge 3$ is an integer and k is a real number, prove that n is equal to the sum of n^{th} powers of the roots of the equation $x^n - kx - 1 = 0$. Solution :

Let $\alpha_1, \alpha_2, \cdots, \alpha_n$ be the roots of the equation $x^n - kx - 1 = 0$. Therefore $\alpha_i^n = k\alpha_i + 1, \ 1 \le i \le n$. [1 mark]

Therefore
$$\sum_{i=1}^{n} \alpha_i^n = k \sum_{i=1}^{n} \alpha_i + n, \ 1 \le i \le n.$$
 [2 marks]

But as $n \ge 3$, $\sum_{i=1}^{n} \alpha_i = 0$, since the coefficient of x^{n-1} is zero. Thus

$$\sum_{i=1}^{n} \alpha_i^n = n.$$
 [2 marks]

2. Find all positive integers n such that $(n2^n - 1)$ is divisible by 3. **Solution :** Note that $2^2 \equiv 1 \pmod{3}$. Hence, $2^{2k} \equiv 1 \pmod{3}$. Thus if n is even then $2^n \equiv 1 \pmod{3}$ and if n is odd then $2^n \equiv 2 \pmod{3}$. Hence, if n is even then $n2^n - 1 \equiv (n-1) \pmod{3}$ and if n is odd then $n2^n - 1 \equiv 2n - 1 \pmod{3}$. $3|(n2^n - 1)$ Hence $(n-1) \equiv 0 \pmod{3}$ if nis even and 3|(-n-1) if n is odd. Hence, n = 6k + 4 [2 marks] or n = 6k + 5. [2 marks]

Further, if
$$n = 6k + 4$$
 or $n = 6k + 5$ then $n|n2^n - 1$. [1 mark]

3. Start with the set $S = \{3, 4, 12\}$. At any stage you may perform the following operation: Choose any two elements $a, b \in S$ and replace them by $\left(\frac{3a-4b}{5}\right)$ and $\left(\frac{4a+3b}{5}\right)$. Is it possible to transform the set S into the set $\{4, 6, 12\}$ by performing the above operation a finite number of times?

Solution :

When we replace a and b by $a_1 = \left(\frac{3a-4b}{5}\right)$ and $b_1 = \left(\frac{4a+3b}{5}\right)$. The set $\{a, b, c\}$ changes to $\{a_1 = \left(\frac{3a-4b}{5}\right), b_1 = \left(\frac{4a+3b}{5}\right), c_1 = c\}$. The sum of squares of the elements of this set is

 $\left(\frac{3a-4b}{5}\right)^2 + \left(\frac{4a+3b}{5}\right)^2 + c^2 = a^2 + b^2 + c^2$. Thus the new set $\{a_1, b_1, c_1\}$ satisfies the condition $a^2 + b^2 + c^2 = a_1^2 + b_1^2 + c_1^2$. Now the set $\{3, 4, 12\}$ has sum of squares equal to 169, where as the new set $\{4, 6, 12\}$ has sum of squares equal to 196. The two sums are different. Hence it is not possible to transform the set $\{3, 4, 5\}$ to $\{4, 6, 12\}$. [5 marks]

Note: If the answer is no by trial and error then give 1 mark.

4. Let a < b. Let f be a continuous function on [a, b] and differentiable on (a, b). Let α be a real number. If f(a) = f(b) = 0, show that there exists $x_0 \in (a, b)$ such that $\alpha f(x_0) + f'(x_0) = 0$. Solution : Define $g(x) = e^{\alpha x} f(x)$. Then $g'(x) = e^{\alpha x} [\alpha f(x) + f'(x)]$. [2 marks]

As f(a) = f(b) = 0, we have g(a) = g(b) = 0. By Rolle's theorem, there exists $x_0 \in (a, b)$ such that $g'(x_0) = 0$. This implies $\alpha f(x_0) + f'(x_0) = 0$. [3 marks]

Part III N.B. Each question in Part III carries 12 marks.

1. Let M_n be the $n \times n$ matrix with all 1's along the main diagonal, directly above the main diagonal and directly below the main diagonal and 0's everywhere else. For example,

$$M_{3} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, M_{4} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}. \quad \text{Let } d_{n} = \det M_{n}.$$

(a) Find d₁, d₂, d₃, d₄. [If all are done 2 marks]
(b) Find a formula expressing d_n in terms of d_{n-1} and d_{n-2}, for all n ≥ 3. [3 for expressing it and 3 for the proof.]
(c) Find d₁₀₀. [4 marks]
Solution :

• Next,
$$M_3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
, so clearly $\det(M_3) = 1(\det(M_2)) - 1(1) = d_3 = -1$.
• Note $M_4 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$, $\det(M_4) = 1(\det(M_3)) - 1(\det(M_2)) = d_4 = -1$.

(Some students will realize induction here and will straightaway go to general formula).

• Let
$$M_n = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 1 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Then, we claim: $det(M_n) = 1(det(M_{n-1})) - 1(det(M_{n-2}))$ i.e.,

$$\det(M_n) = \det(M_{n-1}) - \det(M_{n-2}).$$

• The proof follows from the row-expansion formula for the determinant.

Expanding along the first row, in M_n , we get:

$$\det(M_n) = 1(\det(M_{n-1})) - 1(\det K),$$

where K is the following $(n-1) \times (n-1)$ matrix:

$$K = \begin{pmatrix} 1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 1 & \cdots & 0 \\ 0 & \cdots & 1 & 1 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & \cdots & 1 \\ 0 & \cdots & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Again expanding along the first row, note that

$$(\det K) = 1(\det(M_{n-2})) - 1(\det K'),$$

where
$$K' = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$
.

Clearly, $\det K' = 0$, as all the entries in one column of K' are 0. This proves the claim.

• Now, it is easy to find that:

$$d_5 = d_4 - d_3 = (-1) - (-1) = 0,$$

$$d_6 = d_5 - d_4 = 0 - (-1) = 1,$$

$$d_7 = d_6 - d_5 = 1 - 0 = 1,$$

$$d_8 = d_7 - d_6 = 1 - 1 = 0.$$

- In fact, finding a few more terms makes the pattern obvious by looking at the following table:
 - $d_{1} = 1 = d_{7}$ $d_{2} = 0 = d_{8}$ $d_{3} = -1 = d_{9}$ $d_{4} = -1 = d_{10}$ $d_{5} = 0 = d_{11}$ $d_{6} = 1 = d_{12}$
- Thus, we can calculate d_n for any n by the following formula:

$$d_n = 1, \text{if } n \equiv 0, 1 \pmod{6},$$

 $d_n = 0, \text{if } n \equiv 2, 5 \pmod{6},$
 $d_n = -1, \text{if } n \equiv 3, 4 \pmod{6}.$

- 2. Let $p(x) = x^{2n} 2x^{2n-1} + 3x^{2n-2} 4x^{2n-3} + \dots 2nx + (2n+1)$. Show that the polynomial p(x) has no real root. Solution : If $x \le 0$ then p(x) > 0. [2 marks] Let x > 0. $p(x) = x^{2n} - 2x^{2n-1} + 3x^{2n-2} - 4x^{2n-3} + \dots - 2nx + (2n+1)$. $xp(x) = x^{2n+1} - 2x^{2n} + 3x^{2n-1} - 4x^{2n-2} + \dots - 2nx^2 + (2n+1)x$.
 - 6

$$\begin{aligned} xp(x) + p(x) &= x^{2n+1} - x^{2n} + x^{2n-1} - x^{2n-2} + \dots + x + (2n+1). \\ (1+x)p(x) &= x \left(\frac{1+x^{2n+1}}{1+x}\right) + (2n+1). \\ \Rightarrow p(x) > 0 \text{ for } x > 0. \end{aligned}$$
[10 marks]

Note: If done for an interval then maximum 2 marks.

3. Let $f(x) = x^{10} + a_1 x^9 + a_2 x^8 + \dots + a_{10}$ where a_i 's are integers.

If all the roots of f(x) are from the set $\{1, 2, 3\}$, determine the number of such polynomials. Further, if g(x) is the sum of all such polynomials

f(x), then show that the constant term of g(x) is $\frac{1}{2}(3^{12}+1)-2^{12}$. Solution :

Note that $f(x) = (x-1)^a (x-2)^b (x-3)^c$, where a+b+c = 10 and $a, b, c \ge 0$ are integers. [2 marks]

If c = 0 then there are 11 solutions. If c = 1 then there are 10 solutions. If c = 2 then there are 9 solutions. If c = 3 then there are 8 solutions and so on. Thus for every c there are 11 - c solutions. Hence, the total number of solutions is $1 + 2 + \cdots + 11 = 66$. Hence, there are 66 such polynomials. [4 marks]

The constant term of g(x) i.e a_{10} equals

$$\sum_{a+b+c=10} 1^{a} 2^{b} 3^{c} \qquad [2 \text{ marks}]$$

$$= 3^{10} + 3^{9} (2+1) + 3^{8} (2^{2} + 2(1) + 1^{2}) + \dots + 3^{0} (2^{10} + 2^{9} + \dots + 1)$$

$$= 3^{10} (2-1) + 3^{9} (2^{2} - 1)) + 3^{8} (2^{3} - 1) + \dots + 3^{0} (2^{11} - 1)$$

$$= 3^{11} 2 (1 + \frac{2}{3} + \dots + \left(\frac{2}{3}\right)^{10}) - \frac{1}{2} (3^{11} - 1)$$

$$= 3^{11} 2 (1 - (\frac{2}{3})^{11}) - \frac{1}{2} (3^{11} - 1)$$

$$= 2 (3^{11} - 2^{11}) - \frac{1}{2} (3^{11} - 1) \qquad [4 \text{ marks}]$$

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that

$$f(x+h) - f(x) = hf'(x + \frac{1}{2}h),$$

for all real x and h. Prove that f is a polynomial of degree at most 2. Solution :

From the given condition, we have $f(x+h) - f(x-h) = 2hf'(x), \forall x, h$. Therefore putting x = 0, we get $f(h) - f(h) = 2hf'(0), \forall h$. Differentiating with respect to $h, f'(h) + f'(-h) = 2f'(0), \forall h$.

Now define g(x) = f'(x) - f'(0). Then g(0) = 0 and g(-x) = -g(x). Again f'(a+h) + f'(a-h) = 2f'(a). Putting a+h = x, a-h = y in above expression, we get $f'(x) + f'(y) = 2f'(\frac{x+y}{2})$ (*)

and putting
$$h = a$$
, we get $f'(2a) + f'(0) = 2f'(a)$.
Therefore $f'(a) + f'(0) = 2f'(\frac{a}{2})$. (**)

From (*) $f'(x) + f'(y) = 2f'(\frac{\bar{x} + y}{2})$ From (**) f'(x) + f'(y) = f'(x + y) + f'(0). g(x + y) = f'(x + y) - f'(0) = f'(x) + f'(y) - 2f'(0) = [f'(x) - f'(0)] + [f'(y) - f'(0)] = g(x) + g(y). Therefore $g(kx) = kg(x), g(\frac{x}{n}) = \frac{1}{n}g(x), g(\frac{m}{n}x) = \frac{m}{n}g(x)$. Now g is continuous, $g(\alpha x) = \alpha g(x), \forall \alpha \in \mathbb{R}$. Therefore g is linear.

Therefore f'(x) - f'(0) = ax. Therefore f'(x) = f'(0) + ax. Therefore $f(x) = \frac{a}{2}x^2 + f'(0)x + c$.

defining the function g is crucial hence 8 marks for that and then 4 marks for showing that it is linear.

5. (a) Let n = 9. Express n as a sum of positive integers such that their product is maximum. Find the value of the maximum product.

(b) Repeat part (a) for n = 10 and n = 11.

(c) Given a positive integer $n \ge 6$, express n as a sum of positive integers such that their product is maximum. Find the value of the maximum product.

Solution :

(a) 9=3+3+3.

(b) 10=2+2+3+3, 11=2+3+3+3.

Note that expressing 9, 10 and 11 carries 1 mark each.

(c) Let $n \ge 5$. Note that n = (n-3) + 3 and n < 3(n-3). [6 marks]

Hence, we write n as sum of 3's till we get a number < 5. If the resulting number is 4, then we express it as 2 + 2. If it is 2 or 3 then keep it as it is. [3 marks]