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Solutions and Scheme of Marking
N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50
marks.

Part I
N.B. Each question in Part I carries 2 marks.

1. The values of a and b for which (x− 1)2 divides ax4 + bx3 + 1 are
(A) a = −2, b = 4 (B) a = 3, b = −4 (C) a = −3, b = 4 (D) a = 2, b = −3.
Ans: (B)

2. If f : R → R satisfies |f(x)− f(y)| ≤ |x− y|2 for all x, y ∈ R and f(1) = 5 then
f(2025) is
(A) 1 (B) 5 (C) 2025 (D) 0.
Ans: (B)

3. Let z ∈ C. The area of triangle whose vertices are represented by −z, iz, z − iz is
(A) (1/2)|z| (B) |z| (C) (3/2)|z|2 (D) |z|2.
Ans: (C)

4. The remainder when x100 − 2x51 + 1 is divided by x2 − 1 is
(A) x− 2 (B) 2x− 1 (C) −2x+ 2 (D) x− 1.
Ans: (C)

5. If f(x) + 2f(1− x) = x2 +2 for all real numbers x and f is differentiable function, then
the value of f ′(8) is
(A) 0 (B) −4 (C) −3 (D) 4.
Ans: (D)

6. If the function f is periodic and for some fixed a > 0 and for all real numbers x we
have

f(x+ a) =
1 + f(x)

1− f(x)
, then the possible value of period is

(A) 4a (B) a (C) 2a (D) 8a.
Ans: (A)

7. For real numbers a, b if one root of the equation (a − b)x2 + ax + 1 = 0 is double the
other, then the greatest value of b is
(A) 9/8 (B) 8/9 (C) 8 (D) 9.
Ans: (A)

8. The value of
∞∑
n=1

n

n4 + n2 + 1
is

(A) 1/3 (B) 1/4 (C) 1/5 (D) 1/2.
Ans: (D)

9. Let f : R → R be a continuous function such that f(r + 1
n) = f(r) for all rational

numbers r and positive integers n. Which of the following is true?
(A) Image of f is uncountable (B) Image of f is a singleton set
(C) Image of f is two point set (D) such a function does not exist.
Ans: (B)
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10. The number of regions the curves y = x3 and y =
x2

x+ 1
divide the square [0, 1]× [0, 1]

is
(A) 2 (B) 3 (C) 4 (D) 5
Ans: (C)

Part II
N.B. Each question in Part II carries 6 marks.

1. Let f : R → R be a continuous function satisfying f(f(x)) = (f(x))2 for all x ∈ R and
f(100) = 200. Find all possible values of f(500).
Solution: Let f(f(x)) = (f(x))2. Put x = 100. Then we have
f(f(100)) = f(200) = (f(100))2 = (200)2. Now by the Intermediate Value Property,
[200, (200)2] ⊆ R(f). [4]
As 500 ∈ [200, (200)2], there exists a real number a such that f(a) = 500. Note that
f(f(a)) = f(500) = (f(a))2 = (500)2. [2]

2. Let A =

{
2x+ 5

3x− 1
: x < 0

}
, B =

{
x :

2x+ 5

3x− 1
< 0

}
. Find supA, inf A, supB, inf B if

they exist. Justify your answer.

Solution: A =
{2x+ 5

3x− 1
: x < 0

}
Let f : (−∞, 0) → R be a function defined as f(x) =

2x+ 5

3x− 1
.

Then f ′(x) =
−17

(3x− 1)2
< 0 and hence f is a decreasing function on (−∞0).

Thus, sup(A) = sup(f) = lim
x→0

f(x) = −5

Also, inf(A) = inf(f) = lim
x→−∞

f(x) =
2

3
[3]

B =
{
x ∈ R :

2x+ 5

3x− 1
< 0

}
.

Note that x ∈ B ⇐⇒ (2x+ 5 > 0 and 3x− 1 < 0) OR (2x+ 5 < 0 and 3x− 1 > 0)
Hence, x ∈ B ⇐⇒ (x > −5/2 and x < 1/3) OR (x < −5/2 and x > 1/3)
Thus, x ∈ B ⇐⇒ x > −5/2 and x < 1/3.

So, B =

(
−5

2
,
1

3

)
and hence, inf(B) = −5

2
and sup(B) =

1

3
. [3]

3. Let p(x) = a0 + a1x + · · · + anx
n be a polynomial with integer coefficients such that

p(0) ̸= 0 and p(r) = p(s) = 0 for two integers 0 < r < s. Prove that for some k, ak ≤ −s.
Solution: Since p(s) = 0, we have p(x) = (x− s)q(x), where
q(x) = b0 + b1x+ · · ·+ bn−1x

n−1, bi are integers. [2]
Observe that a0 = −sb0. Thus b0 ̸= 0. If b0 > 0, then a0 < −s and we are through.
Now let b0 < 0. As q(x) has at least one real positive root, by Descarte’s rule of sign,
there is at least one sign change in the coefficients of q(x). Thus there exists k such
that bk ≤ 0 and bk+1 > 0. This implies ak+1 = −sbk+1 + bk ≤ −s. [4]

4. For any positive integer m, show that there exists a real m × m matrix A such that
A3 = A+ I. Also, show that for any such A, determinant of A is positive.
Solution: Note that the matrix A = λI satisfies A3 = A+ I if and only if λ3 = λ+ 1.
Since λ3 − λ − 1 is a cubic polynomial, it has at least one real root. Therefore such
matrix A exists. [2]
Claim: The minimal polynomial of A has exactly one real root and two complex roots.
Let p(x) = x3 − x − 1. Since p(1) < 0 and p(2) > 0, by Intermediate Value Property,
there is a root between 1 and 2. Note that the sum of the roots is zero. Therefore all
roots cannot be positive. If −1 < x < 0, then x3 < 0 but x + 1 > 0. Therefore p(x)
has no root in (−1, 0). If x < −1, then p′(x) = 3x2 − 1 > 0, and p(−1) = −1. Hence
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p(x) < −1 for all x < −1. Therefore p(x) has no root in (−∞,−1). Hence p(x) has
exactly one real positive root say α and two complex roots β, β. If the multiplicity of α
is r and of β is s, then detA = (α)r(ββ)s > 0. [4]

5. A frog starts at the point (0, 0) in the coordinate plane and makes a sequence of jumps.
In every jump frog covers a distance of 10 units and after each jump the frog is at a
point whose coordinates are both integers.

(a) Show that the frog can never reach the point (2025, 2025).

(b) Show that the frog can reach the point (2026, 2026). Find the minimum number
of jumps needed for the frog to achieve this.

Solution: Note that by the given condition, the only points in R2 where frog can reach
in one jump from (0, 0) are

(±10, 0), (0,±10), (±6,±8), (±8,±6).

Thus, each jump corresponds to adding one of the above vectors to the previous position
of the frog.

(a) Observe that after each jump, both the coordinates of frog’s position remains even.
Hence, frog cannot reach to (2025, 2025). [2]

(b) Observe that (2026, 2026) = (0, 0) + 144(6, 8) + 144(8, 6) + (10, 0) + (0, 10)
Thus, the frog will reach to (2026, 2026) by taking 290 jumps from (0, 0).
Let s = x + y be the sum of x and y coordinates of the frog’s position (x, y) in
R2. Thus, it starts at s = 0 and ends at s = 4052. Further, by observing the
possible jumps, each jump changes the sum of x and y coordinates by atmost 14
and 4052 > 4046 = 289 × 14. Thus, it follows that the frog must take more than
289 jumps to reach to the destination. Hence, the minimum number of jumps
needed for the frog to reach (2026, 2026) from (0, 0) is 290. [4]

Part III

1. Let {sn} be a sequence of real numbers and let {tn} be a sequence defined by
tk = sk+1 − sk and tk+1 − tk = 1 for all k ∈ N.

(a) Find s1 if s8 = s10 = 0. [2]

(b) Find s1 if s20 = s25 = 0. [4]

(c) Let sn = sm = 0 for some distinct positive integers m,n. Prove that sk ∈ Z for all
k ∈ N if and only if m,n are of different parity. [6]

Solution: Let {sn} be a sequence of real numbers and let {tn} be a sequence defined
by tk = sk+1 − sk and tk+1 − tk = 1 for all k ∈ N. Substituting tk, we get
sk+2 − 2sk+1 + sk = 1. [I]

(a) Putting k = 8 in [I], we have s10 − 2s9 + s8 = 1. Given that s8 = s10 = 0. Thus we
get s9 = −1/2. Now putting k = 7 in [I], we have s7 = 3/2. Now by successively
putting values k = 6, 5, 4, 3, 2, 1; we get s1 = 63/2. [2]

(b) Given that s20 = s25 = 0. We have s21 = s20 + t20,
s22 = s21 + t21 = s21 + t20 + 1 = s20 + 2t20 + 1,
s23 = s22 + t22 = s20 + 2t20 + 1 + t22 = s20 + 2t20 + 1 + t20 + 2 = s20 + 3t20 + 3.
Similarly, s24 = s20+4t20+6 and s25 = s20+5t20+10. Now putting s20 = s25 = 0,
we have t20 = −2. Thus t19 = −3 and s19 = s20 − t20 = 2. Now s18 = s19 − t19 =
2 + 3 = 5. One may now use [I] and successively find values of sk for k < 18. We
then get s1 = 228. [4]
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(c) One can use the sets
{tk} = {t1, t1 + 1, t1 + 2, · · · , t1 + (k − 1), · · · }
{sk} = {s1, s1 + t1, s1 + 2t1 + 1, s1 + 3t1 + 1 + 2, · · · }
sk = s1 + (k − 1)t1 + (1 + 2 + · · ·+ (k − 2)) = s1 + (k − 1)t1 +

(k−2)(k−1)
2

Thus sn = s1 + (n− 1)t1 +
(n−2)(n−1)

2 and sm = s1 + (m− 1)t1 +
(m−2)(m−1)

2 .
Taking difference, we get
0 = sn − sm = t1(n−m) + (n−2)(n−1)−(m−2)(m−1)

2 = t1(n−m) + (n−m)(n+m−3)
2

Therefore, t1 = 3−n−m
2 . Hence, t1 is an integer if and only if m,n are of different

parity. Now sk is an integer if and only if t1 is integer. [6]

2. For 0 < k ≤ 1, n ∈ N, let pn(x) = xn + xn−1 + · · ·+ x− k.

(a) Show that for each n, pn(x) has a unique positive real root. [2]

(b) If an is the positive root of pn(x), then show that the sequence {an} is convergent.

[5]

(c) Find lim
n→∞

an. [5]

Solution: For 0 < k ≤ 1 and for each n ∈ N, we have pn(x) = xn + xn−1 + · · ·+ x− k.

(a) Note that pn(0) = −k < 0 and pn(k) > 0. Thus, by intermediate value theorem,
pn(x) must have a root in (0, k). Further, p′n(x) > 0 for all x > 0. Thus, pn(x) is
increasing in (0,∞) and hence pn(x) has unique positive root for each n. [2]

(b) Note that pn+1(x) = pn(x)+xn+1. Thus Pn+1(an) = an+1
n > 0. Thus an+1 ∈ (0, an)

for each n. Thus, sequence (an) is monotonically decreasing. [5]
Further, we know that an > 0 ∀n ∈ N. Thus, (an) is a convergent sequence.

(c) Note that pn(x) =
x(1− xn)

1− x
− k =

xn+1 − (k + 1)x+ k

x− 1

Thus, pn(an) = 0 gives
an+1
n

k + 1
= an − k

k + 1
.

Further, we have, 0 < an < a2 ≤ 1, ∀n ≥ 2. Hence, 0 < an+1
n ≤ an+1

2 , ∀n ≥ 2.

Hence the sequence (an+1
n ) converges to 0 implying lim

n→∞
an =

k

k + 1
. [5]

3. Let L := {(x, y) ∈ R2 | x, y ∈ Z}.

(a) Show that there is no regular hexagon with all its vertices in L. [5]

(b) Show that for any ε > 0, there exists n ∈ N such that an equilateral triangle with
two of its vertices at (0, 0) and (2n, 0) respectively has its third vertex inside an
ε-neighbourhood of a point in L. [7]

Solution: Let L := {(x, y) ∈ R2 | x, y ∈ Z}.

(a) If possible, let ABCDEF be a regular hexagon with all its vertices in L. Since all
of its vertices have integer coordinates, by Pick’s Theorem we get that the area of
the hexagon is given by

[ABCDEF ] = i+
b

2
− 1

where i and b are the numbers of points in L in the interior and on the boundary
of ABCDEF respectively. This gives us that the area of hexagon ABCDEF is
a rational number. On the other hand, we know that for a regular hexagon, the
area is also given by

[ABCDEF ] =
3
√
3

2
AB2
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Since A,B are points with integer coordinates, AB2 is also an integer. This gives
us that the area of ABCDEF is an irrational number, which contradicts our earlier
conclusion. Hence there can be no regular hexagon with all its vertices in L. [5]

(b) Note that if an equilateral triangle has two of its vertices at (0, 0) and (2n, 0)
respectively for some n ∈ N, then its third vertex must be at (n, n

√
3). Hence

the problem reduces to showing that for any ϵ > 0, there exist n, k ∈ N such that
|n
√
3 − k| < ϵ, or equivalently that, there exists n ∈ N such that {n

√
3} < ϵ,

where {·} represents the fractional part function. Let N ∈ N be such that 1
N < ϵ.

We divide the unit interval I := [0, 1) into N equal parts I1, I2, . . . , IN of size
1
N each. Hence, we have that Ik := [(k − 1)/N, k/N) for each k ∈ {1, 2, . . . , N}.
Consider the set M := {n

√
3 | n ∈ N}. Since M is an infinite set, by Pigeon-

Hole Principle, there exist n1, n2 ∈ N such that {n1

√
3}, {n2

√
3} ∈ Ik0 for some

k0 ∈ {1, 2, . . . , N}. Without loss of generality let n1 > n2. Then in this case we
see that {(n1 − n2)

√
3} ∈ I1. Since the length of I1 is 1/N which is smaller than

ϵ, this completes the proof. [7]

4. Let A be a square matrix of order 2k with entries 1 to 4k2 in some order exactly once.

(a) Show that there exists a row or column having two entries with their difference at
least 2k2. [3]

(b) Show that there exists a row or column having two entries with their difference at
least 2k2 + k − 1. [7]

(c) For k = 2, find such an A with the difference between any two entries in same row
or column is at most 9. [4]

Solution:

(a) If 1 and 4k2 are in the same row or column, then 4k2 − 1 ≥ 2k2. Otherwise
suppose a is in the intersection of row containing 1 and column containing 4k2.
Then max{4k2 − a, a− 1} > 4k2−1

2 . Therefore max{4k2 − a, a− 1} ≥ 2k2. [3]

(b) Define sets S and T as follows:
S = {(i, j) : aij ∈ {1, 2, · · · , k2}} and T = {(i, j) : either aip or aqj ∈ {1, 2, · · · , k2}}.
That is T is a union of rows and columns in which there is an entry from {1, 2, · · · , k2}.
Case 1: Suppose that the entries in S forms a k × k submatrix of A.
Let M = max{aij : (i, j) ∈ T}. As (i, j) ∈ T, either ith row or jth column has an
entry from {1, 2, · · · , k2}. But, the entries in S is a k× k submatrix. So either ith

row or jth column has k entries from {1, 2, · · · , k2}. Thus some difference is at least
M − (k2−k+1) (because largest k entries are k2, k2−1, k2−2, · · · , k2−k+1). In
this case, we now show that M ≥ 3k2. This will follow if we show that |T | ≥ 3k2.
Suppose T is a union of a rows and b columns, then |T | = 2ka + 2kb − ab. But

|S| = k2 ≤ ab. Therefore |T | = 2ka+2kb−ab = 2ka+b(2k−a) ≥ 2ka+ k2

a (2k−a)

= 2k(a+ k2

a )− k2 ≥ 2k(2k)− k2 = 3k2.
Thus some difference is at least 3k2 − (k2 − k + 1) = 2k2 + k − 1.
Case 2: Suppose that the entries in S do not form a k × k submatrix of A. In
this case, we show that |T | ≥ 3k2 + k. Suppose a ≥ b. As the entries in S do not
not a k× k submatrix, a ≥ k+1. Suppose a = k+ r ≥ k+1. As ab ≥ k2, we have
b ≥ k − r + 1. But |T | = 2ka+ b(2k − a) ≥ 2k(k + r) + (k − r + 1)(2k − k − r) =
3k2 + k + r(r − 1) ≥ 3k2 + k.
Thus some difference is at least 3k2 + k − k2 = 2k2 + k. [7]

(c) One possible matrix is


10 12 14 16
9 11 13 15
2 4 6 8
1 3 5 7

 [4]
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