MADHAVA MATHEMATICS COMPETITION

(A Mathematics Competition for Undergraduate Students)

Organized by

Department of Mathematics, S. P. College, Pune

and

Homi Bhabha Centre for Science Education, T.I.F.R., Mumbai

Date: 08/01/2017

Time: 12.00 noon to 3.00 p.m.

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50 marks.

Part I

N.B. Each question in Part I carries 2 marks.

- 1. The number $\sqrt{2}e^{i\pi}$ is:
 - A) a rational number.
 - B) an irrational number.
 - C) a purely imaginary number.
 - D) a complex number of the type a + ib where a, b are non-zero real numbers.

2. Let
$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
. The rank of P^4 is: A) 1 B) 2 C) 3 D) 4.

- 3. Let $y_1(x)$ and $y_2(x)$ be the solutions of the differentiable equation $\frac{dy}{dx} = y + 17$ with initial conditions $y_1(0) = 0, y_2(0) = 1$. Which of the following statements is true? A) y_1 and y_2 will never intersect.
 - B) y_1 and y_2 will intersect at x = e.
 - C) y_1 and y_2 will intersect at x = 17.
 - D) y_1 and y_2 will intersect at x = 1.
- 4. Suppose f and g are differentiable functions and h(x) = f(x)g(x). Let h(1) = 24, g(1) = 6, f'(1) = -2, h'(1) = 20. Then the value of g'(1) is A) 8 B) 4 C) 2 D) 16.
- 5. In how many regions is the plane divided when the following equations are graphed, not considering the axes? y = x², y = 2^x
 A) 3 B) 4 C) 5 D) 6.
- 6. For $0 \le x < 2\pi$, the number of solutions of the equation $\sin^2 x + 3\sin x \cos x + 2\cos^2 x = 0$ is

A) 1 B) 2 C) 3 D) 4.

7. The minimum value of the function $f(x) = x^x$, $x \in (0, \infty)$ is

A)
$$\left(\frac{1}{10}\right)^{\overline{10}}$$
 B) $10^{\frac{1}{10}}$ C) $\frac{1}{e}$ D) $\left(\frac{1}{e}\right)^{\overline{e}}$.

- 8. Let f be a twice differentiable function on \mathbb{R} . Also f''(x) > 0 for all $x \in \mathbb{R}$. Which of the following statements is true?
 - A) f(x) = 0 has exactly two solutions on \mathbb{R} .
 - B) f(x) = 0 has a positive solution if f(0) = 0 and f'(0) = 0.
 - C) f(x) = 0 has no positive solution if f(0) = 0 and f'(0) > 0.
 - D) f(x) = 0 has no positive solution if f(0) = 0 and f'(0) < 0.

Max. Marks: 100

9. If
$$x^{2} + x + 1 = 0$$
, then the value of $\left(x + \frac{1}{x}\right)^{2} + \left(x^{2} + \frac{1}{x^{2}}\right)^{2} + \dots + \left(x^{27} + \frac{1}{x^{27}}\right)^{2}$ is
A) 27 B) 54 C) 0 D) -27.
10. Let M= $\begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix}$. Then $M^{2017} =$
A) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ B) $\begin{pmatrix} -2^{2017} & -1 \\ 3^{2017} & 1 \end{pmatrix}$ C) $\begin{pmatrix} -2 & 3 \\ -1 & 1 \end{pmatrix}$ D) $\begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix}$.

Part II

N.B. Each question in Part II carries 6 marks.

- 1. Let a, b, c be real numbers such that $a + b + c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ and abc = 1. Prove that at least one of a, b, c is 1.
- 2. Let c_1, c_2, \ldots, c_9 be the zeros of the polynomial $z^9 6z^7 + 12z^6 + 18z^4 24z^3 + 30z^2 z + 2017$. If $S(z) = \sum_{k=1}^9 |z c_k|^2$, then prove that S(z) is constant on the circle |z| = 100.
- 3. Let f be a monic polynomial with real coefficients. Let $\lim_{x\to\infty} f''(x) = \lim_{x\to\infty} f\left(\frac{1}{x}\right)$ and $f(x) \ge f(1)$ for all $x \in \mathbb{R}$. Find f.
- 4. Call a set of integers non isolated if for every $a \in A$ at least one of the numbers a 1and a + 1 also belongs to A. Prove that the number of 5-element non - isolated subsets of $\{1, 2, \ldots, n\}$ is $(n - 4)^2$.
- 5. Find all positive integers n for which a permutation a_1, a_2, \ldots, a_n of $\{1, 2, \ldots, n\}$ can be found such that $0, a_1, a_1 + a_2, a_1 + a_2 + a_3, \ldots, a_1 + a_2 + \ldots + a_n$ leave distinct remainders modulo n + 1.

Part III

- 1. Do there exist 100 lines in the plane, no three concurrent such that they intersect exactly in 2017 points? [12]
- 2. On the parabola $y = x^2$, a sequence of points $P_n(x_n, y_n)$ is selected recursively where the points P_1, P_2 are arbitrarily selected distinct points. Having selected P_n , tangents drawn at P_{n-1} and P_n meet at say Q_n . Suppose P_{n+1} is the point of intersection of $y = x^2$ and the line passing through Q_n parallel to Y-axis. Under what conditions on P_1, P_2
 - (a) both the sequences $\{x_n\}$ and $\{y_n\}$ converge?
 - (b) $\{x_n\}$ and $\{y_n\}$ both converge to 0? [13]
- 3. (a) Show that there does not exist a 3-digit number A such that $10^3A + A$ is a perfect square.
 - (b) Show that there exists an *n*-digit (n > 3) number A such that $10^n A + A$ is a perfect square. [12]
- 4. For $n \times n$ matrices A, B, let C = AB BA. If C commutes with both A and B, then
 - (a) Show that $AB^k B^k A = kB^{k-1}C$ for every positive integer k.
 - (b) Show that there exists a positive integer m such that $C^m = 0$. [13]