MADHAVA MATHEMATICS COMPETITION

(A Mathematics Competition for Undergraduate Students)

Organized by

Department of Mathematics, S. P. College, Pune and

Homi Bhabha Centre for Science Education, T.I.F.R., Mumbai

Date: 4/1/2015

Max. Marks: 100

Time : 12.00 noon to 3.00 p.m.

N. B. : Part I carries 20 marks, Part II carries 30 marks and Part III carries 50 marks.

Part I

N.B. Each question in Part I carries 2 marks.

- How many five digit positive integers that are divisible by 3 can be formed using the digits 0, 1, 2, 3, 4 and 5, without any of the digits getting repeated?

 A) 216
 B) 96
 C) 120
 D) 625 .
- 2. If $I = \int_0^1 \frac{1}{1+x^8} dx$, then A) $I < \frac{1}{2}$ B) $I < \frac{\pi}{4}$ C) $I > \frac{\pi}{4}$ D) $I = \frac{\pi}{4}$
- 3. Find *a* and *b* so that y = ax + b is a tangent line to the curve $y = x^2 + 3x + 2$ at x = 3. A) a = 9, b = -7 B) a = 3, b = -2 C) a = -9, b = 7 D) a = -3, b = 2.
- 4. Suppose p is a prime number. The possible values of gcd of $p^3 + p^2 + p + 11$ and $p^2 + 1$ are

- 2,5 B) 2,5,10 C) 1,5,10 D) 1,2,10.
- 5. Consider all 2×2 matrices whose entries are distinct and belong to {1, 2, 3, 4}. The sum of determinants of all such matrices is
 A) 4!
 B) 0
 C) negative
 D) odd.
- 6. Choose the correct alternative:
 - A) The Taylor series of $\sin \frac{1}{x}$ about $x = \frac{2}{\pi}$ does not exist. B) The coefficient of $\left(x - \frac{2}{\pi}\right)^2$ in the Taylor series of $\sin \frac{1}{x}$ about $x = \frac{2}{\pi}$ is $\frac{-\pi^4}{32}$. C) The Taylor series of $\sin \frac{1}{x}$ about $x = \frac{2}{\pi}$ has negative powers of x. D) The coefficient of $\left(x - \frac{2}{\pi}\right)^2$ in the Taylor series of $\sin \frac{1}{x}$ about $x = \frac{2}{\pi}$ is 0.
- 7. Consider all right circular cylinders for which the sum of the height and circumference of the base is 30 cm. The radius of the one with maximum volume is

A) 3 B) 10 C)
$$\frac{10}{\pi}$$
 D) $\frac{\pi}{10}$

8. In how many ways can you express $2^3 3^5 5^7 7^{11}$ as a product of two numbers, ab, where gcd(a,b) = 1 and 1 < a < b?

C) 7

D) 8.

- A) 5
- 9. The value of $\int_{a}^{b} \sin x \, dx$ is A) $(b-a)\sin c$ B) $(b-a)\cos c$ C) $\frac{\sin c}{b-a}$ D) $\frac{\cos c}{b-a}$

for some real number c such that $a \leq c \leq b$.

B) 6

10. Suppose a, b, c are three distinct integers from 2 to 10 (both inclusive). Exactly one of ab, bc and ca is odd and abc is a multiple of 4. The arithmetic mean of a and b is an integer and so is the arithmetic mean of a, b and c. How many such (unordered) triplets are possible?

A) 4 B) 5 C) 6 D) 7.

Part II

N.B. Each question in Part II carries 6 marks.

- 1. Let $P(x) = \sum_{r=0}^{n} c_r x^r$ be a polynomial with real coefficients with $c_0 > 0$ and $\sum_{r=0}^{[n/2]} \frac{c_{2r}}{2r+1} < 0.$ Prove that P has root in (-1, 1).
- 2. If $|z_1| = |z_2| = |z_3| > 0$ and $z_1 + z_2 + z_3 = 0$, then show that the points representing the complex numbers z_1, z_2, z_3 form an equilateral triangle.
- 3. If $1, \alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ are n^{th} roots of unity, prove that

$$\frac{1}{2-\alpha_1} + \frac{1}{2-\alpha_2} + \dots + \frac{1}{2-\alpha_{n-1}} = \frac{(n-2)2^{n-1}+1}{2^n-1}.$$

- 4. Let f(x) be a monic polynomial of degree 4 such that f(1) = 10, f(2) = 20, f(3) = 30. Find f(12) + f(-8).
- 5. Find all solutions (a, b, c, n) in positve integers for the equation $2^n = a! + b! + c!$.

Part III

- 1. Suppose the polynomials f and g have the same roots and $\{x \in \mathbb{C} : f(x) = 2015\} = \{x \in \mathbb{C} : g(x) = 2015\}$, then show that f = g. [13]
- 2. Give an example of a function which is continuous at exactly two points and differentiable at exactly one of them. Justify your answer. [13]
- 3. Let A be any $m \times n$ matrix whose entries are positive inegers. A step consists of transforming the matrix either by multiplying every entry of a row by 2 or subtracting 1 from every entry of a column. Can you transform A into the zero matrix in finitely many steps? Justify your answer. [12]
- 4. Let S be the set of positive integers that do not have zero in their decimal representation. Thus $S = \{1, 2, 3, \dots, 9, 11, 12, \dots, 19, 21, \dots, 99, 111, \dots\}.$

Show that the series
$$\sum_{n \in S} \frac{1}{n}$$
 converges.

[12]