MADHAVA MATHEMATICS COMPETITION, 12th January 2020 Solutions and scheme of marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50 marks.

Part I

N.B. Each question in Part I carries 2 marks.

- Let A be a non-empty subset of real numbers and f: A → A be a function such that f(f(x)) = x for all x ∈ A. Then f(x) is
 A) a bijection B) one-one but not onto
 C) onto but not one-one D) neither one-one nor onto.
 Answer: A
 If f(x) = f(y), then f(f(x)) = f(f(y)) implies x = y. Therefore f is one-one function. By definition, f is onto. Hence f is a bijection.
- 2. If f: R → R be a function satisfying f(x + y) = f(xy) for all x, y ∈ R and f(3/4) = 3/4, then f(9/16) =
 A) 9/16 B) 0 C) 3/2 D) 3/4.
 Answer: D
 If we put y = 0, then f(x) = f(0) for all x ∈ R. This implies that f is a constant function.
- 3. The area enclosed between the curves $y = \sin^2 x$ and $y = \cos^2 x$ in the interval $0 \le x \le \pi/2$ is A) 2 B) 1/2 C) 1 D) 3/4. Answer: C Area $= \int_0^{\pi/4} (\cos^2 x - \sin^2 x) dx + \int_{\pi/4}^{\pi/2} (\sin^2 x - \cos^2 x) dx$ $= \int_0^{\pi/4} \cos 2x dx - \int_{\pi/4}^{\pi/2} \cos 2x dx = 1/2 + 1/2 = 1.$
- 4. The number of ordered pairs (m, n) of all integers satisfying $\frac{m}{12} = \frac{12}{n}$ is A) 15 B) 30 C) 12 D) 10. Answer: B

We have mn = 144 and $144 = 2^4 3^2$. There are 15 divisors of 144 which are positive integers. Including negative integers total 30 pairs are there.

5. Suppose 2 log x + log y = x - y. Then the equation of the tangent line to the graph of this equation at the point (1, 1) is
A) x + 2y = 3 B) x - 2y = 3 C) 2x + y = 3 D) 2x - y = 3.
Answer: A
Consider 2 log x + log y = x - y. Differentiating this equation with respect to x,

we get $\frac{2}{x} + \frac{1}{y}\frac{dy}{dx} = 1 - \frac{dy}{dx}$. At point (1,1) the slope of tangent is -1/2. The equation of tangent is x + 2y = 3.

- 6. Let f: R → R defined as f(x) = sin[x], where [x] denotes the greatest integer less than or equal to x. Then
 A) f is a 2π-periodic function B) f is a π-periodic function
 C) f is a 1-periodic function D) f is not a periodic function.
 Answer: D
 If f is a periodic function with period T, then sin[x + T] = sin[x]. This implies [x + T] [x] = 2nπ for some integer n, which is not possible.
- 7. For how many integers a with 1 ≤ a ≤ 100, a^a is a square?
 A) 50 B) 51 C) 55 D) 56.
 Answer: C
 Case 1: all even integers. There are 50 even integers between 1 and 100.

Case 1: an even integers. There are 50 even integers between 1 and 100. Case 2: a is an odd number which is a square i. e. 1,9,25,49,81. Therefore total number is 55.

- 8. $\lim_{x \to 0} x \begin{bmatrix} \frac{1}{x} \\ \frac{1}{x} \end{bmatrix}$ A) 0 B) 1 C) -1 D) does not exist. **Answer: B** $\lim_{x \to 0} \left(x \begin{bmatrix} \frac{1}{x} \\ 1 \end{bmatrix} - 1 \right) = \lim_{x \to 0} \left(x \begin{bmatrix} \frac{1}{x} \\ 1 \end{bmatrix} - x \frac{1}{x} \right) = \lim_{x \to 0} x \left(\begin{bmatrix} \frac{1}{x} \\ 1 \end{bmatrix} - \frac{1}{x} \right) = 0.$ 9. If α and β are the roots of $x^2 + 3x + 1$ then $\left(\frac{\alpha}{\beta + 1} \right)^2 + \left(\frac{\beta}{\alpha + 1} \right)^2$ equals A) 19 B) 18 C) 20 D) 17. **Answer: B** Observe that $\alpha + \beta = -3$, $\alpha\beta = 1$, $\alpha^2 + 3\alpha + 1 = 0$, $\beta^2 + 3\beta + 1 = 0$. Therefore $(\alpha + 1)^2 = \alpha^2 + 2\alpha + 1 = -\alpha$, $(\beta + 1)^2 = \beta^2 + 2\beta + 1 = -\beta$. $\left(\frac{\alpha}{\beta + 1} \right)^2 + \left(\frac{\beta}{\alpha + 1} \right)^2 = \left(\frac{\alpha^2}{-\beta} \right) + \left(\frac{\beta^2}{-\alpha} \right) = \frac{1 + 3\alpha}{\beta} + \frac{1 + 3\beta}{\alpha}$ $= \frac{(1 + 3\alpha)\alpha + (1 + 3\beta)\beta}{\alpha\beta} = 3(\alpha^2 + \beta^2) + (\alpha + \beta) = 18.$
- 10. The equation $z^3 + iz 1 = 0$ has
 - A) no real root B) exactly one real root

C) three real roots D) exactly two real roots.

Answer: A

If x is a real root, then $x^3 + ix - 1 = 0$. This implies that x = 0 and $x^3 = 1$, which is not possible.

Part II

N.B. Each question in Part II carries 6 marks.

1. Let a_1, a_2, \cdots be a sequence of natural numbers. Let (a, b) denote the greatest common divisor (gcd) of a and b. If $(a_m, a_n) = (m, n)$ for all $m \neq n$, prove that $a_n = n$ for all $n \in \mathbb{N}$.

Solution: Note that $(a_n, a_{n^2}) = (n, n^2) = n$. Therefore *n* divides a_n . [2]Let $a_n = mn$. Then $(a_n, a_{mn}) = (n, mn) = n$ and $(a_m, a_{mn}) = (m, mn) = m$. [2]This implies that mn divides a_{mn} . Since mn divides both a_{mn} and a_n , it divides their gcd n. Hence m = 1 and thus $a_n = n$. [2]

2. Let $f: \mathbb{C} \to \mathbb{C}$ be a function such that $f(z)f(iz) = z^2$ for all $z \in \mathbb{C}$. Prove that f(z) + f(-z) = 0 for all $z \in \mathbb{C}$. Find such a function. **Solution:** It is given that $f(z)f(iz) = z^2$ for all $z \in \mathbb{C}$. Replacing z by iz, we get $f(iz)f(-z) = -z^2$. Adding these two expressions we get, f(iz)[f(z)+f(-z)] = 0. From $f(z)f(iz) = z^2$ we deduce that f(z) = 0 if and only if z = 0. If $z \neq 0$, then $f(iz) \neq 0$ and so f(z) + f(-z) = 0. If z = 0, then f(z) + f(-z) = 2f(0) = 0. Thus f(z) + f(-z) = 0, $\forall z \in \mathbb{C}$. [4]Example: $f(z) = \left(\frac{-1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)z$ or $f(z) = \left(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right)z$ [2]

3 given rectangle. What is the minimum number of line segments (not necessarily of same lengths) that are required so as to divide the rectangle into n subrectangles? Justify.

For example, in the adjacent figure, 3 segments are drawn to get 5 subrectangles and 3 is the minimum number.

Solution: It can be observed that there are three cases.

Case 1: Let $n = k^2$. Consider (k-1) horizontal and (k-1) vertical line segments. These 2(k-1) line segments will generate k^2 subrectangles. Note that this is a configuration with minimum number of line segments to divide the rectangle into k^2 subrectangles. [2]

Case 2: Let $k^2 + 1 \le n \le k^2 + k$. Consider a small horizontal line segment, which divides one of k^2 subrectangles into 2 subrectangles resulting into total $k^{2}+1$ subrectangles. Extending this small line segment, we can get up to $k^{2}+k$ subrectangles. Hence, in this case the the minimum number of line segments required to divide the rectangle into n subrectangles is 2(k-1) + 1 = 2k - 1. [3] **Case 3:** Let $k^2 + k + 1 \le n \le k^2 + 2k + 1$. Applying the same procedure as given in case 2, but instead of horizontal line segment we need to take a vertical line segment and extend it as above. Thus, in this case the minimum number of line segments required to divide the rectangle into n subrectangles is (2k-1)+1=2k.

[1]

4. Let $f: [0,1] \to (0,\infty)$ be a continuous function satisfying $\int_0^1 f(t)dt = \frac{1}{3}$. Show that there exists $c \in (0,1)$ such that $\int_0^c f(t)dt = c - \frac{1}{2}$. **Solution:** Define $g(x) = \int_0^x f(t)dt + \frac{1}{2}$. [2] Then $g: [0,1] \to [0,1]$ is a continuous function. By fixed point theorem, there exists $c \in (0,1)$ such that g(c) = c. Observe that $c \neq 0, 1$. Thus we get $\int_0^c f(t)dt = c - \frac{1}{2}$. [4]

5. Let $A = \begin{pmatrix} -1 & 1 \\ 0 & -2 \end{pmatrix}$. Show that there exist matrices X, Y such that $A = X^3 + Y^3$. Solution: Note that $A^2 + 3A + 2I = 0$. [2]

Therefore
$$A(A^2 + 3A + 2I) = A^3 + 3A^2 + 2A = 0$$
. This implies that
 $(A + I)^3 = A^3 + 3A^2 + 3A + I = A + I.$
[2]

Hence
$$A = (A + I)^3 - I = (A + I)^3 + (-I)^3$$
.
Thus we get $X = A + I = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $X = -I = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ [2]

Thus we get
$$X = A + I = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$
 and $Y = -I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. [2]

Part III

1. Let $f:(0,\infty)\to\mathbb{R}$ be a continuous function satisfying f(1)=5 and $f\left(\frac{x}{x+1}\right) = f(x) + 2$ for all positive real numbers x. a) Find $\lim_{x \to \infty} f(x)$. b) Show that $\lim_{x \to 0^+} f(x) = \infty$. c) Find one example of such a function. |12|**Solution:** a) Note that as $x \to \infty$, $\frac{x}{x+1} \to 1$. Hence $\lim_{x \to \infty} f(x) = f(1) - 2 = 5 - 2 = 3$. [2]b) Observe that as $x \to 0^+, \frac{x}{x+1} \to 0$. If $\lim_{x\to 0^+} f(x) = L$, then L = L+2. This implies that the limit is not finite. [1]Define $g: [\frac{1}{n+1}, \frac{1}{n}] \to [\frac{1}{n+2}, \frac{1}{n+1}]$ as $g(x) = \frac{x}{x+1}$. Note that $g(\frac{1}{n+1}) = \frac{1}{n+2}$, $g(\frac{1}{n}) = \frac{1}{n+1}$ and $g'(x) = \frac{1}{(x+1)^2} > 0$. Therefore g is an increasing function and hence g is one-one and onto. For $x \in [\frac{1}{3}, \frac{1}{2}]$, there is some $t \in [\frac{1}{2}, 1]$ such that $f(x) = f(g(t)) = f(\frac{t}{t+1}) = f(t) + 2$. By induction, it can be proved that for $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$, there is some $t \in \left[\frac{1}{2}, 1\right]$ such that f(x) = f(t) + 2(n-1). Let M > 0 be any real number. Since f is continuous on $\left[\frac{1}{2}, 1\right]$, it is bounded and attains its bounds. There exists $M_1 > 0$ such that $-M_1 < f(t) < M_1, \forall t \in [\frac{1}{2}, 1].$ Suppose $f(t_0) = \min f(t), t \in [\frac{1}{2}, 1]$. Therefore $f(t) \ge f(t_0), \forall t \in [\frac{1}{2}, 1]$. Choose $n_1 \in \mathbb{N}$ such that $f(t_0) + 2(n_1 - 1) > 0$. We can choose $n_2 \in \mathbb{N}$ such that

$$n_{2} > M + M_{1} + 2. \text{ Suppose } n_{0} = \max\{n_{1}, n_{2}\} \text{ and } \delta = \frac{1}{n_{0}} > 0. \text{ If } 0 < x < \delta, \text{ then } x \in [\frac{1}{n_{0}+1}, \frac{1}{n_{0}}] \text{ and } |f(x)| = |f(t) + 2(n_{0} - 1)|, \ t \in [\frac{1}{2}, 1].$$
Now $f(t) + 2(n_{0} - 1) \ge f(t_{0}) + 2(n_{0} - 1) \ge f(t_{0}) + 2(n_{1} - 1) > 0.$
Note that $|f(x)| = f(t) + 2(n_{0} - 1) \ge -M_{1} + 2(n_{0} - 1) > -M_{1} - 2 + n_{0} \ge -M_{1} - 2 + n_{2} > M.$
Hence $\lim_{x \to 0^{+}} f(x) = \infty.$
(6)
c) Example: $f(x) = 3 + \frac{2}{x}.$
(3)

- 2. An $n \times n$ matrix $A = (a_{ij})$ is given. The sum of any n entries of A, whose any two entries lie on different rows and different columns, is the same.
 - a) Prove that there exist numbers x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n such that $a_{ij} = x_i + y_j$ for all $i, j, 1 \le i, j \le n$. b) Prove that rank $(A) \le 2$. [12]

Solution: a) Consider *n* entries situated on different rows and different columns $a_{ij_i}, i = 1, 2, \dots, n$. Fix *k* and $l, 1 \leq k < l \leq n$ and replace a_{kj_k} and a_{lj_l} with a_{kj_l} and a_{lj_k} respectively. The new *n* entries are still situated on different rows and different columns. Since the sums of sets of *n* entries are equal, this implies $a_{kj_k} + a_{lj_l} = a_{kj_l} + a_{lj_k}$. [*]

Now denote by x_1, x_2, \dots, x_n the entries in the first column and by $x_1, x_1+y_2, x_1+y_3, \dots, x_1+y_n$ the entries in the first row.

$$A = \begin{pmatrix} x_1 & x_1 + y_2 & x_1 + y_3 & \cdots & x_1 + y_n \\ x_2 & \cdots & & \\ \vdots & & & \\ x_n & \cdots & & & \end{pmatrix}$$

That is we have defined $x_k = a_{k1}$ for all $k, y_1 = 0$ and $y_k = a_{1k} - a_{k1}$ for all $k \ge 2$. Now $a_{ij} = x_i + y_j$ for all i, j with i = 1 or j = 1. Consider i, j > 1. From [*] we deduce that $a_{11} + a_{ij} = a_{1j} + a_{i1}$. Hence $x_1 + a_{ij} = x_i + x_1 + y_j$. This implies $a_{ij} = x_i + y_j$ for all i, j. [8]

b) Let A_j denote the j^{th} column of matrix A. Then

$$A_{j} = \begin{pmatrix} x_{1} + y_{j} \\ x_{2} + y_{j} \\ \vdots \\ x_{n} + y_{j} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} + y_{j} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \alpha + y_{j}\beta, \text{ where } \alpha = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}.$$

That is $A_j \in \langle \alpha, \beta \rangle$, where $\langle \alpha, \beta \rangle$ denotes the linear span of α, β . This is true for every column of A. Hence rank $(A) \leq \dim \langle \alpha, \beta \rangle \leq 2$. [4]

3. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be a differentiable function. Let

$$J = \left\{ \frac{f(b) - f(a)}{b - a} : a, b \in I, a < b \right\}.$$

Show that a) J is an interval.

b) $J \subseteq f'(I)$ and f'(I) - J contains at most two elements. [13] **Solution:** a) Note that J is an interval if and only if for every $a, b \in J, a < b$, we have $(a, b) \subset J$. Let $u, v \in J, u < v$. Hence $u = \frac{f(b_1) - f(a_1)}{b_1 - a_1}, v = \frac{f(b_2) - f(a_2)}{b_2 - a_2}$. Suppose $p \in (u, v)$. Define a function Q on [0, 1] as

$$Q(t) = \frac{f(tb_1 + (1-t)b_2) - f(ta_1 + (1-t)a_2)}{t(b_1 - a_1) + (1-t)(b_2 - a_2)}.$$

Since Q is a continuous function and Q(0) = v, Q(1) = u, we deduce that there exists t_0 such that $Q(t_0) = p$. Hence $p = \frac{f(b_0) - f(a_0)}{b_0 - a_0}$, where $b_0 = t_0 b_1 + (1 - t_0) b_2$ and $a_0 = t_0 a_1 + (1 - t_0) a_2$. Thus $p \in J$. [6] b) Using Lagrange's Mean Value Theorem, we get $\frac{f(b) - f(a)}{b - a} = f'(c)$ for some $c \in (a, b)$. Hence $J \subseteq f'(I)$. [2] Let $p \in I$ and $y_n = \frac{f(p + (1/n)) - f(p)}{1/n}$. If p is the right end point of an interval I, then choose $y_n = \frac{f(p) - f(p - (1/n))}{1/n}$. Note that y_n converges to f'(p). Hence $f'(p) \in \overline{J}$. Therefore $f'(I) \subseteq \overline{J}$. Since $J \subseteq f'(I) \subseteq \overline{J}$ and J being an interval, the set f'(I) - J contains at most two elements, which are the end points of J. [5]

4. Let q, n be positive integers such that 1 < q < n and gcd(q, n) = 1. a) Show that there exist unique integers k, r such that $n = kq - r, \ 0 \le r < q$. b) Show that there exists a unique positive integer m and unique integers b_1, b_2, \cdots, b_m all ≥ 2 satisfying $\frac{n}{q} = b_1 - \frac{1}{b_2 - \frac{1}{b_3 - 1}}$ $\therefore -\frac{1}{b_{m-1} - \frac{1}{b_m}}$. c) If $b_j > 2$ for some j, then show that $\sum_{i=1}^m (b_i - 2) < 2(n - q - 1)$. [13]

Solution:

- (a) By division algorithm, there exists unique $k_1, r_1 \in \mathbb{N}$ such that $n = k_1q + r_1$, where $0 \leq r_1 < q$. Further, $gcd(q, n) = 1 \implies r_1 > 0$. Thus, we get, $n = (k_1 + 1)q - (q - r_1)$. Since, $r_1 < q$, we have, $r = q - r_1 > 0$, r < q and let $k = k_1 + 1 \in \mathbb{N}$. Hence, there exists unique $k, r \in \mathbb{N}$ such that n = kq - r, where 0 < r < q. [3]
- (b) By (a), we get $k, r \in \mathbb{N}$ such that n = kq r and 0 < r < q. Thus, $\frac{n}{q} = k - \frac{r}{q}$. Let $b_1 = k$. Now, $n > q \implies k \ge 2 \implies b_1 \ge 2$.

Observe : $\frac{n}{q} = b_1 - \frac{1}{q/r}$. Now, q > r; gcd(q, r) = 1. Let $r_1 = r$. Hence, by applying the above procedure to q and r_1 , we get,

$$\frac{q}{r_1} = b_2 - \frac{1}{r_1/r_2}$$

where, $b_2 \ge 2$ and $r_2 < r_1$.

Repeating these steps, we get, r_1, r_2, \ldots, r_m such that $0 < r_m < r_{m-1} < r_{m-2} < \cdots < r_2 < r_1$. The process ends after finitely many steps(say m steps), with $r_m = 1$. Now, we prove that, whenever, in the above expression, $b_i \ge 2$, for each $i = 1, 2, \ldots, m$ then such $b_i s$ are unique. $\dots \dots \dots \dots (I)$ In fact, we prove that if $b_i \ge 2$, for all $i = 1, 2, \ldots, m$ then $b_1 = \lfloor \frac{n}{q} \rfloor + 1$ Case (i) if $b_1 > \lfloor \frac{n}{q} \rfloor + 1$. In this case, we can write: $\frac{n}{q} = b_1 - \frac{r}{q}$, for some r > q. Thus, $\frac{n}{q} = b_1 - \frac{1}{q/r} = b_1 - \frac{1}{b_2 - s}$; where $b_2 - s = \frac{q}{r}$, giving $s = b_2 - \frac{q}{r}$ Now, we have, r > q and $b_2 \ge 2$. Hence, s > 1. Thus, $\frac{n}{q} = b_1 - \frac{1}{b_2 - s}$, where s > 1. Thus, $\frac{n}{q} = b_1 - \frac{1}{b_2 - s}$, where s > 1. Thus, $\frac{n}{q} = b_1 - \frac{1}{b_2 - s}$, where s > 1. Thus, $\frac{n}{q} = b_1 - \frac{1}{b_2 - s}$, where s > 1. Thus, $\frac{n}{q} = b_1 - \frac{1}{b_2 - s}$, where s > 1. Thus, $\frac{n}{q} = b_1 - \frac{1}{b_2 - s}$, where s > 1. Thus, $\frac{n}{q} = b_1 - \frac{1}{b_2 - s}$, where s > 1. Thus, $\frac{n}{q} = b_1 - \frac{1}{b_2 - \frac{1}{b_3 - s_1}}$. Hence, the process does not end after finitely many steps. This is a contradiction, since, we have finitely many b_i s. Case (ii) If $b_1 < \lfloor \frac{n}{q} \rfloor + 1$.

In this case, we can write $\frac{n}{q} = b_1 + \frac{r}{q}$, for some r > 0. Thus, $\frac{n}{q} = b_1 - \frac{1}{-q/r} = b_1 - \frac{1}{b_2 - s}$; where $b_2 - s = -\frac{q}{r}$, giving $s = b_2 + \frac{q}{r}$. Now, we have r > 0, q > 0 and $b_2 \ge 2$. Thus, $s \ge 2 > 1$. Hence, we have, $\frac{n}{q} = b_1 - \frac{1}{b_2 - s}$ with s > 1. Again as in case (i), the process does not end after finitely many steps. Hence, we must have $b_1 = \lfloor \frac{n}{q} \rfloor + 1$.

Now by replacing n by q and q by r, we get b_2 is unique. Similarly we get that all b_i s are unique. [5]

(c) To prove that if $b_j > 2$ for some $j \in \{1, 2, ..., m\}$ then $\sum_{i=1}^{m} (b_i - 2) < 2(n - q - 1).$ We apply second principle of induction on n.

Observe that for n = 2, n = 3, n = 4, there is no value of q satisfying all the conditions.

To prove for n = 5: Case (i) q = 2. We have $\frac{5}{2} = 3 - \frac{1}{2}$ and by (I), such expression is unique. Case (ii) q = 3. We have $\frac{5}{3} = 2 - \frac{1}{3}$ and by (I), such expression is unique. Let n > 5. Assume the result is true for all k < n. To prove the result for n+1. Let 1 < q < n+1 and gcd(n+1,q) = 1 $\frac{n+1}{q} = b_1 - \frac{1}{q/r} = b_1 - \frac{1}{b_2 - \frac{1}{b_3 - 1}}$ $\cdots - \frac{1}{b_{m-1} - \frac{1}{b_m}}$ By uniqueness of b_i s, we have, $\frac{q}{r} = b_2 - \frac{1}{b_2 - \frac{b$ $\therefore -\frac{1}{b_{m-1}-\frac{1}{b_m}}$. If no $b_i > 2$ for $i = 2, 3, \ldots, m$ then we get, $b_i = 2$, for each $i = 2, 3, \ldots, m$. So, we must have $b_1 > 2$. In this case, we get $\frac{n+1}{q} = b_1 - \frac{1}{2 - \frac{1}{2}}$ $\cdot \cdot \cdot - \frac{1}{2-\frac{1}{2}}$.

Observe that $\frac{1}{2 - \frac{k-1}{2}} = \frac{k}{k+1}$. Hence $\frac{n+1}{a} = b_1 - \frac{k-1}{k}$. Now $n + 1 = b_1 q - \frac{k}{k} q$. Thus k | q. Let q = km. Then we have $n + 1 = b_1 q - (k - 1)m = b_1 q - km + m = b_1 q - q + m$. Therefore $n - q = b_1q - 2q + m - 1 = q(b_1 - 2) + (m - 1)$. Thus we get $2(n+1-q-1) = 2(n-q) = 2q(b_1-2) + 2(m-1) > b_1 - 2$ as required.

Now, if $b_i > 2$, for some $i = 2, 3, 4, \ldots, m$ then applying induction hypothesis to q, we get,

$$\sum_{i=2}^{m} (b_i - 2) < 2(q - r - 1)$$

We need to prove that $\sum_{i=1}^{m} (b_i - 2) < 2(n + 1 - q - 1).$ It is enough to prove that $2(q-r-1) + b_1 - 2 \le 2(n+1-q-1)$ That is to prove that $2q - 2r - 2 + b_1 - 2 \le 2(b_1q - r - q - 1)$, which is equivalent to $b_1 - 2 \leq 2q(b_1 - 2)$ which holds. Hence, the result is true for n + 1. Thus by second principal of induction, the result is true for all $n \geq 5$.

[5]