MADHAVA MATHEMATICS COMPETITION, 12th January 2020
Solutions and scheme of marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries
50 marks.

Part I
N.B. Each question in Part I carries 2 marks.

1. Let A be a non-empty subset of real numbers and f : A — A be a function such
that f(f(z)) = x for all z € A. Then f(z) is
A) a bijection  B) one-one but not onto
C) onto but not one-one D) neither one-one nor onto.
Answer: A

If f(z) = f(y), then f(f(x)) = f(f(y)) implies x = y. Therefore f is one-one
function. By definition, f is onto. Hence f is a bijection.

2. If f: R — R be a function satisfying f(z + y) = f(xy) for all z,y € R and
£(3/4) = 3/4, then f(9/16) =
A)9/16 B)0 C)3/2 D) 3/4.
Answer: D
If we put y = 0, then f(z) = f(0) for all x € R. This implies that f is a constant
function.

2 2

3. The area enclosed between the curves y = sin“x and y = cos® z in the interval
0<x<7/2is
A)2 B)1/2 C)1 D)3/4.

Answer: C

/4 w/2
Area = / (cos® x — sin® x)dx + / (sin®z — cos® x)dx
0 /4
/4 /2 /
:/ Cos2xdx—/ cos2zdr =1/2+1/2=1.
0 w/4
: . .. om 12
4. The number of ordered pairs (m,n) of all integers satisfying T
n

A)15 B)30 C)12 D) 10.

Answer: B

We have mn = 144 and 144 = 2%32. There are 15 divisors of 144 which are
positive integers. Including negative integers total 30 pairs are there.

5. Suppose 2logx + logy = = — y. Then the equation of the tangent line to the
graph of this equation at the point (1,1) is
A)z+2y=3 B)z—-2y=3 C)2xr+y=3 D)2r—y=3.
Answer: A
Consider 2logx + logy = = — y. Differentiating this equation with respect to x,



2 1d d
we get — + W S ay point (1,1) the slope of tangent is —1/2. The
r ydr dx

equation of tangent is x + 2y = 3.

. Let f: R — R defined as f(z) = sin[x], where [z] denotes the greatest integer
less than or equal to x. Then

A) f is a 2m-periodic function B) f is a m-periodic function

C) f is a l-periodic function D) f is not a periodic function.

Answer: D

If f is a periodic function with period T, then sin[z + T = sin[z]. This implies
[z + T| — [z] = 2n7 for some integer n, which is not possible.

. For how many integers a with 1 < a < 100, a* is a square?
A)50 B)51 C)55 D) 56.
Answer: C
Case 1: all even integers. There are 50 even integers between 1 and 100.
Case 2: a is an odd number which is a square i. e. 1,9,25,49 81.
Therefore total number is 55.

1

Climax | —
x—0 €x

A)0 B)1 C)—1 D) does not exist.
Answer: B

. 1 ) 1 1 ) 1 1
lim (x {—} — 1) = lim (:v {—} — :1:—) =limzx ({—] — —) =
x—0 €T z—0 X X x—0 x X
o 2 3 2
. If & and S are the roots of 22 + 3z + 1 then <—) + (?> equals
«

B+1
A)19 B)18 C)20 D) 17.
Answer: B
Observe that o + 3 = =3, a8 =1, +3a+1=0,3%2+ 38 +1 = 0. Therefore
(a+1)P=a*4+2a+1=—a,(B+1)*=3*+28+1=—p0.

a \? B\ [o? B2\ 1+3a  1+3p3
(75) + () - (59)+ (%) -7+

- (1+3a>&+<1+36)6:3(a2+ﬁz)+(a+ﬂ):18.

af
. The equation 2% 4+ iz — 1 = 0 has
A) no real root B) exactly one real root

C) three real roots D) exactly two real roots.

Answer: A

If z is a real root, then 23 + iz — 1 = 0. This implies that = 0 and 2% = 1,
which is not possible.



Part I1
N.B. Each question in Part II carries 6 marks.

1. Let aj,as,--- be a sequence of natural numbers. Let (a,b) denote the greatest
common divisor (ged) of a and b. If (ay,, a,) = (m,n) for all m # n, prove that
a, = n for all n € N.

Solution: Note that (a,, a,2) = (n,n?) = n. Therefore n divides a,,. 2]
Let a, = mn. Then (an, ) = (n,mn) = n and (4, Gmn) = (M, mn) =m. [2]
This implies that mn divides a,,,. Since mn divides both a,,, and a,, it divides
their gcd n. Hence m =1 and thus a,, = n. 2]

2. Let f: C — C be a function such that f(z)f(iz) = 22 for all z € C. Prove that
f(z)+ f(=2z) =0 for all z € C. Find such a function.
Solution: It is given that f(z)f(iz) = 2% for all z € C. Replacing z by iz, we get
f(iz) f(=2z) = —2z2. Adding these two expressions we get, f(i2)[f(z)+ f(—2)] = 0.
From f(2)f(iz) = 2% we deduce that f(z) = 0 if and only if z = 0.
If 2 # 0, then f(iz) # 0 and so f(z) + f(—=2) =0.
If z=0, then f(z) + f(—2) =2f(0) =0. Thus f(2) + f(—2) =0, V2€ C. [4]

Fxample: f(2) — (_—1 4 z‘i) 2 or f(z) = (i - z’i) . 9]

V2 V2 V2 V2

3. Let n be a positive integer. Line segments can be drawn parallel to edges of a

given rectangle. What is the minimum number of line segments (not necessarily of

same lengths) that are required so as to divide the rectangle into n subrectangles?
Justify.

For example, in the adjacent figure, 3 segments are drawn to get 5
subrectangles and 3 is the minimum number.

Solution: It can be observed that there are three cases.

Case 1: Let n = k. Consider (k—1) horizontal and (k—1) vertical line segments.
These 2(k — 1) line segments will generate k? subrectangles. Note that this is a
configuration with minimum number of line segments to divide the rectangle into
k? subrectangles. 2]
Case 2: Let k> +1 < n < k% + k. Consider a small horizontal line segment,
which divides one of k? subrectangles into 2 subrectangles resulting into total
k? 4 1 subrectangles. Extending this small line segment, we can get up to k* +k
subrectangles. Hence, in this case the the minimum number of line segments
required to divide the rectangle into n subrectangles is 2(k — 1) + 1 = 2k — 1. [3]
Case 3: Let k2 +k+1 <n < k?+2k+ 1. Applying the same procedure as given
in case 2, but instead of horizontal line segment we need to take a vertical line
segment and extend it as above. Thus, in this case the minimum number of line
segments required to divide the rectangle into n subrectangles is (2k—1)+1 = 2k.

1]
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4. Let f:]0,1] — (0,00) be a continuous function satisfying / ft)dt = 3 Show
0

¢ 1
that there exists ¢ € (0, 1) such that / ft)dt =c— 3
0
v 1
Solution: Define g(z) = / f(t)dt + 3 2]
0
Then g : [0,1] — [0,1] is a continuous function. By fixed point theorem,

there exists ¢ € (0,1) such that g(c¢) = ¢. Observe that ¢ # 0,1. Thus we get

¢ 1
/0 Floydt = e~ . f

5. Let A = (_01 _12 . Show that there exist matrices X, Y such that A = X34+Y3,
Solution: Note that A? + 34 + 21 = 0. 2]
Therefore A(A? +3A +21) = A%+ 3A4% + 24 = 0. This implies that
(A+1)P=A*+3A2+3A+1=A+1. 2]
Hence A= (A+ 1) —T=(A+ 1)+ (-1)>

0 1 -1 0
ThuswegetX—A—i—I—(O _1) andY——[—(O _1>. 2]

Part III

1. Let f:(0,00) — R be a continuous function satisfying f(1) =5 and

f ( < ) = f(z) + 2 for all positive real numbers x.
r+1

a) Find lim f(z).
T—00
b) Show that lim f(z) = oc.

z—0t
c¢) Find one example of such a function. [12]

Solution: a) Note that as x — o0, LY
r+1

Hence lim f(z) = f(1)—2=5—-2=3. 2]
T—00
b) Observe that as x — 0T, % — 0. If lim, .o+ f(x) = L, then L = L + 2.
T
This implies that the limit is not finite. 1]
T
Define g : [%H, i — [n+r2, n%l] as g(x) = T Note that g(n%l) = n+r2,
g(%) = %H and ¢'(x) = m > 0. Therefore ¢ is an increasing function and
hence g is one-one and onto. For = € [3, 3], there is some ¢t € [3,1] such that

f(x) = f(g(t)) = f(z7) = f(t) + 2. By induction, it can be proved that for
© € [, =], there is some t € [3,1] such that f(z) = f(t) +2(n — 1),

Let M > 0 be any real number. Since f is continuous on [%, 1], it is bounded and
attains its bounds. There exists M; > 0 such that —M; < f(t) < My, Vt € [5,1].
Suppose f(to) = min f(t), t € [3,1]. Therefore f(t) > f(ty), Vt € [3,1]. Choose
ny € N such that f(¢y) + 2(ny — 1) > 0. We can choose ny € N such that



ny > M + M, + 2. Suppose ng = max{ni,ns} and § = nlo >0.If 0 <z <§, then
v € (A ] and [ f(@)] = |F(8) + 200~ D). € [1.1].

Now [f(t) +2(no — 1) = f(to) + 2(no — 1) = f(to) +2(n1 — 1) > 0.

—M; —2+4+n9 > M.

Hence J}li}rgl+ f(z) = 0. 6]
¢) Example: f(z) =3+ ; 3]

2. An n x n matrix A = (a;;) is given. The sum of any n entries of A, whose any
two entries lie on different rows and different columns, is the same.
a) Prove that there exist numbers 1, xs, -+, x, and y1,ys, - , Yy, such that
Q5 = xl—l—y] for all i,j, 1< Z,] <n.
b) Prove that rank(A) < 2. [12]

Solution: a) Consider n entries situated on different rows and different columns
a;j,,t=1,2,--- ,n. Fix kand [,1 < k <[ < n and replace ay;, and a;;, with ay;,
and a;;, respectively. The new n entries are still situated on different rows and
different columns. Since the sums of sets of n entries are equal, this implies

Akjy, + Agj, = Qgjy + Ay - [*]
Now denote by 1, s, - - - , x, the entries in the first column and by z1, x1+ys, 1+
Y3, ,T1 + Y, the entries in the first row.
T1 T1+Y2 T1t+Ys o X1+ Yn
x2 )
A—
Tn

That is we have defined x) = ay for all k,y; = 0 and yr = ay — ay, for all & > 2.
Now a;; = x; +y; for all 4,7 with ¢ = 1 or j = 1. Consider ¢,7 > 1. From [*]
we deduce that ay; + a;; = ai; + a;1. Hence 1 + a;; = x; + 1 + y;. This implies

a;; = x; +y; for all 4, j. 8]
b) Let A; denote the j% column of matrix A. Then

r1+ Y T 1 ) 1

To + Y x 1 x

j= ’ . = .2 +y; | . | = a+ty;B, where a = _2 and =

Tp + Y Tn 1 Tn 1
That is A; € («, 8) , where (o, 8) denotes the linear span of «, 5. This is true for
every column of A. Hence rank(A4) < dim (a, ) < 2. 4]

3. Let I C R be an interval and f : I — R be a differentiable function. Let

J:{W : a,bel,a<b}.



Show that a) J is an interval.
b) J C f'(I) and f'(I) — J contains at most two elements. [13]

Solution: a) Note that J is an interval if and only if for every a,b € J, a < b, we

b1) — by) —
have (a,b) C J. Let u,v € J,u < v. Henceu:M,v:M.
bl—al b2_a2

Suppose p € (u,v). Define a function @ on [0,1] as

t(bl — al) -+ (1 — t)(bg — CLQ)

Q(t) =

Since @) is a continuous function and Q(0) = v, Q(1) = u, we deduce that there

f(bo) — f(ao)

exists tg such that Q(to) = p. Hence p = , where by = tob1+(1—t0)bo

bo — ao
and ag = toa; + (1 — tg)ay. Thus p € J. 6]
. s f(b> - f(a) !
b) Using Lagrange’s Mean Value Theorem, we get . f'(c) for some
—a
c € (a,b). Hence J C f'(I). 2]
1 _
Let pe I and y, = fp+( 1/7)> f(p)' If p is the right end point of an interval
n
—flp—(1
I, then choose y,, = 1) fl(j/p ( /n)) Note that y,, converges to f'(p). Hence
n

f'(p) € J. Therefore f'(I) C J. Since J C f'(I) C J and .J being an interval, the
set f'(I) — J contains at most two elements, which are the end points of J. [5]

. Let g,n be positive integers such that 1 < ¢ < n and ged(gq,n) = 1.
a) Show that there exist unique integers k,r such that n = kq—7r, 0 <r <gq.

b) Show that there exists a unique positive integer m and unique integers by, ba, - - - , by,
all > 2 satisfying n_ by — T
q by — ba—
_ 1
bmfl_ﬁ ’
c) If b; > 2 for some j, then show that Z(bz -2)<2(n—q—1). [13]

i=1
Solution:

(a) By division algorithm, there exists unique k1,7, € N such that n = kiq+ry,
where 0 < r; < ¢. Further, ged(¢,n) =1 = r, > 0.
Thus, we get, n = (k1 +1)q — (¢ — ). Since, 1 < q, we have, r = q—1y >
0, r<qgandlet k =k +1€N.
Hence, there exists unique k,r € N such that n = kq — r, where 0 < r < q.

3]
(b) By (a), we get k,r € N such that n = kg —r and 0 < r < q.

Thus,ﬁzk:—i. Let by = k. Now,n>q = k>2 = b > 2.
q q



n 1
Observe : — = by — 7 Now, ¢ > r; ged(q,r) = 1. Let r; = r. Hence, by
q q/r
applying the above procedure to ¢ and ry, we get,
1
4y
1 ™ / T2

where, by > 2 and ry < ry.

Repeating these steps, we get, r1,79,...,7, such that 0 < r,, < r,_1 <
Tm—g < +-+ < ry < ry. The process ends after finitely many steps(say m
steps), with r,, = 1.

Now, we prove that, whenever, in the above expression, b; > 2, for each
i=1,2,...,m then such b;s are unique. ..., (I)

In fact, we prove that if b; > 2, for all : = 1,2,...,m then b; = L—J +1
Case (i) if by > LEJ + 1.
q

) .on r
In this case, we can write: — = b; — —, for some r > q.

q
1 1
Thus, E:bl——:bl——;wherebg—s:g,g;ivirlgs:bQ—g
q/r by — s r r
Now, we have, r > ¢ and by > 2. Hence, s > 1.
Thus, oo by — , wheres >1 (II)
q by — s

The above steps can be repeated to get s; > 1 such that
n
— =b — :

by —
b3 — 51
Hence, the process does not end after finitely many steps. This is a contra-
diction, since, we have finitely many b;s.

Case (ii) If by < {SJ + 1.

) .on r
In this case, we can write — = b; + —, for some r > 0.

n 1
Th — =b; — =b — ———
us,q ' —Q/T ! by — s

Now, we have r > 0, ¢ > 0 and by > 2. Thus, s > 2 > 1

; where by — s = —g, giving s = by + 1
r r

n
Hence, we have, — = b; — with s > 1. Again as in case (i), the process

o — S
does not end after finitely many steps.
n
Hence, we must have by = |—| + 1.
q
Now by replacing n by ¢ and ¢ by r, we get by is unique. Similarly we get
that all b;s are unique. 5]

To prove that if b; > 2 for some j € {1,2,...,m} then

Z(bi—Q) <2(n—q-—1).

i=1



We apply second principle of induction on n.

Observe that for n = 2, n = 3, n = 4, there is no value of ¢ satisfying all
the conditions.

To prove for n = 5:

5) 1
Case (i) ¢ = 2. We have 5= 3 — 3 and by (I), such expression is unique.

Case (ii) ¢ = 3. We have — = 2 — - and by (I), such expression is unique.

Let n > 5. Assume the result is true for all £ < n.
To prove the result for n + 1.
Let 1 <g<n+1andged(n+1,q) =1

1

n+1 1
=b———=b
q q/r by — by
_ 1
bm—l*i

By uniqueness of b;s, we have, 4_ by — —

T bg—

o= ﬁ If no bz > 2 for
m— bm
1 = 2,3,...,m then we get, b, = 2, for each i = 2,3,...,m. So, we must
have by > 2.
1 1
In this case, we get ntl_ by — i
q 2— 5=
1
2-1"
1 k 1 k—1
Observe that T = . Hence ~ te 1= —.
- kAl q K
(k—1)

Now n 41 = biqg — =7=q. Thus k|q. Let ¢ = km. Then we have
n+1=bqg—(k—1)m=bqg—km+m=bqg—q+m.

Therefore n — ¢ =b1g —2¢+m —1=q(by —2) + (m —1).

Thus we get 2(n+1—q—1)=2(n—q) =2¢(by —2) +2(m —1) > b — 2
as required.

Now, if b; > 2, for some ¢ = 2,3,4 ..., m then applying induction hypothesis
to ¢, we get,

> (bi—2)<2(g-r-1)

i=2
We need to prove that Z(bl —-2)<2(n+1—qg—1).

=1
It is enough to prove that 2(¢q —r—1)+b —2<2(n+1—¢q¢—1)
That is to prove that 2¢ — 2r —2+b; —2 < 2(bjg—1r —q— 1),
which is equivalent to b; — 2 < 2¢(b; — 2) which holds. Hence, the result is
true for n + 1. Thus by second principal of induction, the result is true for
all n > 5. 5]






