
MADHAVA MATHEMATICS COMPETITION, 12th January 2020
Solutions and scheme of marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries
50 marks.

Part I
N.B. Each question in Part I carries 2 marks.

1. Let A be a non-empty subset of real numbers and f : A→ A be a function such
that f(f(x)) = x for all x ∈ A. Then f(x) is
A) a bijection B) one-one but not onto
C) onto but not one-one D) neither one-one nor onto.
Answer: A
If f(x) = f(y), then f(f(x)) = f(f(y)) implies x = y. Therefore f is one-one
function. By definition, f is onto. Hence f is a bijection.

2. If f : R → R be a function satisfying f(x + y) = f(xy) for all x, y ∈ R and
f(3/4) = 3/4, then f(9/16) =
A) 9/16 B) 0 C) 3/2 D) 3/4.
Answer: D
If we put y = 0, then f(x) = f(0) for all x ∈ R. This implies that f is a constant
function.

3. The area enclosed between the curves y = sin2 x and y = cos2 x in the interval
0 ≤ x ≤ π/2 is
A) 2 B) 1/2 C) 1 D) 3/4.
Answer: C

Area =

∫ π/4

0

(cos2 x− sin2 x)dx+

∫ π/2

π/4

(sin2 x− cos2 x)dx

=

∫ π/4

0

cos 2xdx−
∫ π/2

π/4

cos 2xdx = 1/2 + 1/2 = 1.

4. The number of ordered pairs (m,n) of all integers satisfying
m

12
=

12

n
is

A) 15 B) 30 C) 12 D) 10.
Answer: B
We have mn = 144 and 144 = 2432. There are 15 divisors of 144 which are
positive integers. Including negative integers total 30 pairs are there.

5. Suppose 2 log x + log y = x − y. Then the equation of the tangent line to the
graph of this equation at the point (1, 1) is
A) x+ 2y = 3 B) x− 2y = 3 C) 2x+ y = 3 D) 2x− y = 3.
Answer: A
Consider 2 log x + log y = x− y. Differentiating this equation with respect to x,
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we get
2

x
+

1

y

dy

dx
= 1 − dy

dx
. At point (1, 1) the slope of tangent is −1/2. The

equation of tangent is x+ 2y = 3.

6. Let f : R → R defined as f(x) = sin[x], where [x] denotes the greatest integer
less than or equal to x. Then
A) f is a 2π-periodic function B) f is a π-periodic function
C) f is a 1-periodic function D) f is not a periodic function.
Answer: D
If f is a periodic function with period T, then sin[x+ T ] = sin[x]. This implies
[x+ T ]− [x] = 2nπ for some integer n, which is not possible.

7. For how many integers a with 1 ≤ a ≤ 100, aa is a square?
A) 50 B) 51 C) 55 D) 56.
Answer: C
Case 1: all even integers. There are 50 even integers between 1 and 100.
Case 2: a is an odd number which is a square i. e. 1,9,25,49,81.
Therefore total number is 55.

8. lim
x→0

x

[
1

x

]
A) 0 B) 1 C) −1 D) does not exist.
Answer: B

lim
x→0

(
x

[
1

x

]
− 1

)
= lim

x→0

(
x

[
1

x

]
− x1

x

)
= lim

x→0
x

([
1

x

]
− 1

x

)
= 0.

9. If α and β are the roots of x2 + 3x+ 1 then

(
α

β + 1

)2

+

(
β

α + 1

)2

equals

A) 19 B) 18 C) 20 D) 17.
Answer: B
Observe that α + β = −3, αβ = 1, α2 + 3α + 1 = 0, β2 + 3β + 1 = 0. Therefore
(α + 1)2 = α2 + 2α + 1 = −α, (β + 1)2 = β2 + 2β + 1 = −β.(

α

β + 1

)2

+

(
β

α + 1

)2

=

(
α2

−β

)
+

(
β2

−α

)
=

1 + 3α

β
+

1 + 3β

α

=
(1 + 3α)α + (1 + 3β)β

αβ
= 3(α2 + β2) + (α + β) = 18.

10. The equation z3 + iz − 1 = 0 has
A) no real root B) exactly one real root
C) three real roots D) exactly two real roots.
Answer: A
If x is a real root, then x3 + ix − 1 = 0. This implies that x = 0 and x3 = 1,
which is not possible.
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Part II
N.B. Each question in Part II carries 6 marks.

1. Let a1, a2, · · · be a sequence of natural numbers. Let (a, b) denote the greatest
common divisor (gcd) of a and b. If (am, an) = (m,n) for all m 6= n, prove that
an = n for all n ∈ N.
Solution: Note that (an, an2) = (n, n2) = n. Therefore n divides an. [2]
Let an = mn. Then (an, amn) = (n,mn) = n and (am, amn) = (m,mn) = m. [2]
This implies that mn divides amn. Since mn divides both amn and an, it divides
their gcd n. Hence m = 1 and thus an = n. [2]

2. Let f : C → C be a function such that f(z)f(iz) = z2 for all z ∈ C. Prove that
f(z) + f(−z) = 0 for all z ∈ C. Find such a function.
Solution: It is given that f(z)f(iz) = z2 for all z ∈ C. Replacing z by iz, we get
f(iz)f(−z) = −z2. Adding these two expressions we get, f(iz)[f(z)+f(−z)] = 0.
From f(z)f(iz) = z2 we deduce that f(z) = 0 if and only if z = 0.
If z 6= 0, then f(iz) 6= 0 and so f(z) + f(−z) = 0.
If z = 0, then f(z) + f(−z) = 2f(0) = 0. Thus f(z) + f(−z) = 0, ∀z ∈ C. [4]

Example: f(z) =

(
−1√

2
+ i

1√
2

)
z or f(z) =

(
1√
2
− i 1√

2

)
z [2]

3. Let n be a positive integer. Line segments can be drawn parallel to edges of a
given rectangle. What is the minimum number of line segments (not necessarily of
same lengths) that are required so as to divide the rectangle into n subrectangles?
Justify.

For example, in the adjacent figure, 3 segments are drawn to get 5
subrectangles and 3 is the minimum number.
Solution: It can be observed that there are three cases.
Case 1: Let n = k2. Consider (k−1) horizontal and (k−1) vertical line segments.
These 2(k − 1) line segments will generate k2 subrectangles. Note that this is a
configuration with minimum number of line segments to divide the rectangle into
k2 subrectangles. [2]
Case 2: Let k2 + 1 ≤ n ≤ k2 + k. Consider a small horizontal line segment,
which divides one of k2 subrectangles into 2 subrectangles resulting into total
k2 + 1 subrectangles. Extending this small line segment, we can get up to k2 + k
subrectangles. Hence, in this case the the minimum number of line segments
required to divide the rectangle into n subrectangles is 2(k− 1) + 1 = 2k− 1. [3]
Case 3: Let k2 +k+ 1 ≤ n ≤ k2 + 2k+ 1. Applying the same procedure as given
in case 2, but instead of horizontal line segment we need to take a vertical line
segment and extend it as above. Thus, in this case the minimum number of line
segments required to divide the rectangle into n subrectangles is (2k−1)+1 = 2k.

[1]

3



4. Let f : [0, 1] → (0,∞) be a continuous function satisfying

∫ 1

0

f(t)dt =
1

3
. Show

that there exists c ∈ (0, 1) such that

∫ c

0

f(t)dt = c− 1

2
.

Solution: Define g(x) =

∫ x

0

f(t)dt+
1

2
. [2]

Then g : [0, 1] → [0, 1] is a continuous function. By fixed point theorem,
there exists c ∈ (0, 1) such that g(c) = c. Observe that c 6= 0, 1. Thus we get∫ c

0

f(t)dt = c− 1

2
. [4]

5. Let A =

(
−1 1
0 −2

)
. Show that there exist matrices X, Y such that A = X3+Y 3.

Solution: Note that A2 + 3A+ 2I = 0. [2]
Therefore A(A2 + 3A+ 2I) = A3 + 3A2 + 2A = 0. This implies that
(A+ I)3 = A3 + 3A2 + 3A+ I = A+ I. [2]
Hence A = (A+ I)3 − I = (A+ I)3 + (−I)3.

Thus we get X = A+ I =

(
0 1
0 −1

)
and Y = −I =

(
−1 0
0 −1

)
. [2]

Part III

1. Let f : (0,∞)→ R be a continuous function satisfying f(1) = 5 and

f

(
x

x+ 1

)
= f(x) + 2 for all positive real numbers x.

a) Find lim
x→∞

f(x).

b) Show that lim
x→0+

f(x) =∞.
c) Find one example of such a function. [12]

Solution: a) Note that as x→∞, x

x+ 1
→ 1.

Hence lim
x→∞

f(x) = f(1)− 2 = 5− 2 = 3. [2]

b) Observe that as x → 0+,
x

x+ 1
→ 0. If limx→0+ f(x) = L, then L = L + 2.

This implies that the limit is not finite. [1]

Define g : [ 1
n+1

, 1
n
]→ [ 1

n+2
, 1
n+1

] as g(x) =
x

x+ 1
. Note that g( 1

n+1
) = 1

n+2
,

g( 1
n
) = 1

n+1
and g′(x) = 1

(x+1)2
> 0. Therefore g is an increasing function and

hence g is one-one and onto. For x ∈ [1
3
, 1
2
], there is some t ∈ [1

2
, 1] such that

f(x) = f(g(t)) = f( t
t+1

) = f(t) + 2. By induction, it can be proved that for

x ∈ [ 1
n+1

, 1
n
], there is some t ∈ [1

2
, 1] such that f(x) = f(t) + 2(n− 1).

Let M > 0 be any real number. Since f is continuous on [1
2
, 1], it is bounded and

attains its bounds. There exists M1 > 0 such that −M1 < f(t) < M1, ∀t ∈ [1
2
, 1].

Suppose f(t0) = min f(t), t ∈ [1
2
, 1]. Therefore f(t) ≥ f(t0), ∀t ∈ [1

2
, 1]. Choose

n1 ∈ N such that f(t0) + 2(n1 − 1) > 0. We can choose n2 ∈ N such that
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n2 > M +M1 + 2. Suppose n0 = max{n1, n2} and δ = 1
n0
> 0. If 0 < x < δ, then

x ∈ [ 1
n0+1

, 1
n0

] and |f(x)| = |f(t) + 2(n0 − 1)|, t ∈ [1
2
, 1].

Now f(t) + 2(n0 − 1) ≥ f(t0) + 2(n0 − 1) ≥ f(t0) + 2(n1 − 1) > 0.
Note that |f(x)| = f(t) + 2(n0 − 1) ≥ −M1 + 2(n0 − 1) > −M1 − 2 + n0 ≥
−M1 − 2 + n2 > M.
Hence lim

x→0+
f(x) =∞. [6]

c) Example: f(x) = 3 +
2

x
. [3]

2. An n × n matrix A = (aij) is given. The sum of any n entries of A, whose any
two entries lie on different rows and different columns, is the same.
a) Prove that there exist numbers x1, x2, · · · , xn and y1, y2, · · · , yn such that
aij = xi + yj for all i, j, 1 ≤ i, j ≤ n.
b) Prove that rank(A) ≤ 2. [12]

Solution: a) Consider n entries situated on different rows and different columns
aiji , i = 1, 2, · · · , n. Fix k and l, 1 ≤ k < l ≤ n and replace akjk and aljl with akjl
and aljk respectively. The new n entries are still situated on different rows and
different columns. Since the sums of sets of n entries are equal, this implies
akjk + aljl = akjl + aljk . [*]
Now denote by x1, x2, · · · , xn the entries in the first column and by x1, x1+y2, x1+
y3, · · · , x1 + yn the entries in the first row.

A =


x1 x1 + y2 x1 + y3 · · · x1 + yn
x2 · · ·
...
xn · · ·


That is we have defined xk = ak1 for all k, y1 = 0 and yk = a1k−ak1 for all k ≥ 2.
Now aij = xi + yj for all i, j with i = 1 or j = 1. Consider i, j > 1. From [*]
we deduce that a11 + aij = a1j + ai1. Hence x1 + aij = xi + x1 + yj. This implies
aij = xi + yj for all i, j. [8]
b) Let Aj denote the jth column of matrix A. Then

Aj =


x1 + yj
x2 + yj

...
xn + yj

 =


x1
x2
...
xn

+yj


1
1
...
1

 = α+yjβ, where α =


x1
x2
...
xn

 and β =


1
1
...
1

 .

That is Aj ∈ 〈α, β〉 , where 〈α, β〉 denotes the linear span of α, β. This is true for
every column of A. Hence rank(A) ≤ dim 〈α, β〉 ≤ 2. [4]

3. Let I ⊆ R be an interval and f : I → R be a differentiable function. Let

J =

{
f(b)− f(a)

b− a
: a, b ∈ I, a < b

}
.
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Show that a) J is an interval.
b) J ⊆ f ′(I) and f ′(I)− J contains at most two elements. [13]

Solution: a) Note that J is an interval if and only if for every a, b ∈ J, a < b, we

have (a, b) ⊂ J. Let u, v ∈ J, u < v. Hence u =
f(b1)− f(a1)

b1 − a1
, v =

f(b2)− f(a2)

b2 − a2
.

Suppose p ∈ (u, v). Define a function Q on [0, 1] as

Q(t) =
f(tb1 + (1− t)b2)− f(ta1 + (1− t)a2)

t(b1 − a1) + (1− t)(b2 − a2)
.

Since Q is a continuous function and Q(0) = v,Q(1) = u, we deduce that there

exists t0 such that Q(t0) = p. Hence p =
f(b0)− f(a0)

b0 − a0
, where b0 = t0b1+(1−t0)b2

and a0 = t0a1 + (1− t0)a2. Thus p ∈ J. [6]

b) Using Lagrange’s Mean Value Theorem, we get
f(b)− f(a)

b− a
= f ′(c) for some

c ∈ (a, b). Hence J ⊆ f ′(I). [2]

Let p ∈ I and yn =
f(p+ (1/n))− f(p)

1/n
. If p is the right end point of an interval

I, then choose yn =
f(p)− f(p− (1/n))

1/n
. Note that yn converges to f ′(p). Hence

f ′(p) ∈ J. Therefore f ′(I) ⊆ J. Since J ⊆ f ′(I) ⊆ J and J being an interval, the
set f ′(I)− J contains at most two elements, which are the end points of J. [5]

4. Let q, n be positive integers such that 1 < q < n and gcd(q, n) = 1.
a) Show that there exist unique integers k, r such that n = kq − r, 0 ≤ r < q.
b) Show that there exists a unique positive integerm and unique integers b1, b2, · · · , bm
all ≥ 2 satisfying

n

q
= b1 −

1

b2 − 1
b3−

. . . − 1
bm−1− 1

bm

.

c) If bj > 2 for some j, then show that
m∑
i=1

(bi − 2) < 2(n− q − 1). [13]

Solution:

(a) By division algorithm, there exists unique k1, r1 ∈ N such that n = k1q+ r1,
where 0 ≤ r1 < q. Further, gcd(q, n) = 1 =⇒ r1 > 0.
Thus, we get, n = (k1 + 1)q− (q− r1). Since, r1 < q, we have, r = q− r1 >
0, r < q and let k = k1 + 1 ∈ N.
Hence, there exists unique k, r ∈ N such that n = kq − r, where 0 < r < q.

[3]

(b) By (a), we get k, r ∈ N such that n = kq − r and 0 < r < q.

Thus,
n

q
= k − r

q
. Let b1 = k. Now, n > q =⇒ k ≥ 2 =⇒ b1 ≥ 2.
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Observe :
n

q
= b1 −

1

q/r
. Now, q > r; gcd(q, r) = 1. Let r1 = r. Hence, by

applying the above procedure to q and r1, we get,

q

r1
= b2 −

1

r1/r2

where, b2 ≥ 2 and r2 < r1.
Repeating these steps, we get, r1, r2, . . . , rm such that 0 < rm < rm−1 <
rm−2 < · · · < r2 < r1. The process ends after finitely many steps(say m
steps), with rm = 1.
Now, we prove that, whenever, in the above expression, bi ≥ 2, for each
i = 1, 2, . . . ,m then such bis are unique. . . . . . . . . . (I)

In fact, we prove that if bi ≥ 2, for all i = 1, 2, . . . ,m then b1 =
⌊n
q

⌋
+ 1

Case (i) if b1 >
⌊n
q

⌋
+ 1.

In this case, we can write:
n

q
= b1 −

r

q
, for some r > q.

Thus,
n

q
= b1 −

1

q/r
= b1 −

1

b2 − s
; where b2 − s =

q

r
, giving s = b2 −

q

r
Now, we have, r > q and b2 ≥ 2. Hence, s > 1.

Thus,
n

q
= b1 −

1

b2 − s
, where s > 1 . . . . . . (II)

The above steps can be repeated to get s1 > 1 such that
n

q
= b1 −

1

b2 −
1

b3 − s1
Hence, the process does not end after finitely many steps. This is a contra-
diction, since, we have finitely many bis.

Case (ii) If b1 <
⌊n
q

⌋
+ 1.

In this case, we can write
n

q
= b1 +

r

q
, for some r > 0.

Thus,
n

q
= b1 −

1

−q/r
= b1 −

1

b2 − s
; where b2 − s = −q

r
, giving s = b2 +

q

r
Now, we have r > 0, q > 0 and b2 ≥ 2. Thus, s ≥ 2 > 1

Hence, we have,
n

q
= b1−

1

b2 − s
with s > 1. Again as in case (i), the process

does not end after finitely many steps.

Hence, we must have b1 =
⌊n
q

⌋
+ 1.

Now by replacing n by q and q by r, we get b2 is unique. Similarly we get
that all bis are unique. [5]

(c) To prove that if bj > 2 for some j ∈ {1, 2, . . . ,m} then
m∑
i=1

(bi − 2) < 2(n− q − 1).
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We apply second principle of induction on n.
Observe that for n = 2, n = 3, n = 4, there is no value of q satisfying all
the conditions.
To prove for n = 5:

Case (i) q = 2. We have
5

2
= 3− 1

2
and by (I), such expression is unique.

Case (ii) q = 3. We have
5

3
= 2− 1

3
and by (I), such expression is unique.

Let n > 5. Assume the result is true for all k ≤ n.
To prove the result for n+ 1.
Let 1 < q < n+ 1 and gcd(n+ 1, q) = 1
n+ 1

q
= b1 −

1

q/r
= b1 −

1

b2 − 1
b3−

. . . − 1
bm−1− 1

bm

By uniqueness of bis, we have,
q

r
= b2 −

1

b3−
. . . − 1

bm−1− 1
bm

. If no bi > 2 for

i = 2, 3, . . . ,m then we get, bi = 2, for each i = 2, 3, . . . ,m. So, we must
have b1 > 2.

In this case, we get
n+ 1

q
= b1 −

1

2− 1
2−

. . . − 1
2− 1

2

.

Observe that
1

2− k−1
k

=
k

k + 1
. Hence

n+ 1

q
= b1 −

k − 1

k
.

Now n+ 1 = b1q − (k−1)
k
q. Thus k|q. Let q = km. Then we have

n+ 1 = b1q − (k − 1)m = b1q − km+m = b1q − q +m.
Therefore n− q = b1q − 2q +m− 1 = q(b1 − 2) + (m− 1).
Thus we get 2(n + 1− q − 1) = 2(n− q) = 2q(b1 − 2) + 2(m− 1) > b1 − 2
as required.

Now, if bi > 2, for some i = 2, 3, 4 . . . ,m then applying induction hypothesis
to q, we get,
m∑
i=2

(bi − 2) < 2(q − r − 1)

We need to prove that
m∑
i=1

(bi − 2) < 2(n+ 1− q − 1).

It is enough to prove that 2(q − r − 1) + b1 − 2 ≤ 2(n+ 1− q − 1)
That is to prove that 2q − 2r − 2 + b1 − 2 ≤ 2(b1q − r − q − 1),
which is equivalent to b1 − 2 ≤ 2q(b1 − 2) which holds. Hence, the result is
true for n + 1. Thus by second principal of induction, the result is true for
all n ≥ 5. [5]
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