MADHAVA MATHEMATICS COMPETITION (Second Round) (A Mathematics Competition for Undergraduate Students)

Organized by

Department of Mathematics, S. P. College, Pune

and

Homi Bhabha Centre for Science Education, T.I.F.R., Mumbai

Date: 15/02/2021

Max. Marks: 50

Time: 12.00 noon to 2.00 p.m.

N.B.: Part I carries 30 marks and Part II carries 20 marks.

Part I

N.B. Each question in Part I carries 6 marks.

1. Let $p(x) = x^4 - ax^3 + bx^2 - cx + 480$ be a polynomial whose all zeros are integers greater than 1. Let further, |p(4)| + |p'(4)| = 0. Find all such polynomials. Also find the least and greatest possible value of a.

2. Let
$$M = \begin{pmatrix} 1/4 & 1/8 & 1/16 \\ 0 & 1/2 & 1/4 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $X = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$. Find the $\lim_{n \to \infty} M^n \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$

3. In the diagram given below, the points A, B, C, D, E, F and P represent cities and edges joining them represent roads connecting the cities.

Two cities are said to be adjacent if there is a single edge joining them. (For example, the cities B, C are adjacent, but B, E are not). A tourist moves to an adjacent city on each day. Starting with P, the tour ends if the tourist happens to come back at P.

- (a) Find the probability that the tour ends on the second day.
- (b) Find the probability that the tour ends on the third day.
- (c) For any natural number n, find the probability that the tour ends on n^{th} day.

- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous strictly increasing function such that f(c) = 0 for some c > 0. Let b > 0 and $x_0 > c$.
 - (a) Consider a line L_0 joining (0, b) and $(x_0, 0)$. Prove that there exists a unique real number x_1 such that $(x_1, f(x_1))$ lies on L_0 .
 - (b) Let L_1 be a line joining (0, b) and $(x_1, 0)$. Define the sequence $\{x_n\}$ inductively applying the above procedure. Prove that the sequence $\{x_n\}$ is convergent. Further, show that $\{x_n\}$ converges to c.
- 5. Prove that every integer between 1 and n!, $(n \ge 3)$ can be expressed as the sum of at most n distinct divisors of n!.

Part II

N.B. Each question in Part II carries 10 marks.

- 1. (a) Show that there does not exist a function $f : (0, \infty) \to (0, \infty)$ such that $f''(x) \leq 0$ for all x and $f'(x_0) < 0$ for some x_0 .
 - (b) Let $k \geq 2$ be any integer. Show that there does not exist an infinitely differentiable function $f: (0, \infty) \to (0, \infty)$ such that $f^{(k)}(x) \leq 0$ for all x and $f^{(k-1)}(x_0) < 0$ for some x_0 . Here, $f^{(k)}$ denotes the k^{th} derivative of f.
- 2. Prove that every monic polynomial f(x) of degree n over \mathbb{R} can be expressed as an arithmetic mean of two monic polynomials of degree n over \mathbb{R} each having n real roots.