MADHAVA MATHEMATICS COMPETITION (Second Round) (A Mathematics Competition for Undergraduate Students)

Organized by

Department of Mathematics, S. P. College, Pune

and

Homi Bhabha Centre for Science Education, T.I.F.R., Mumbai

Date: /02/2022

Max. Marks: 50

Time: 12.00 noon to 2.00 p.m.

N.B.: Part I carries 30 marks and Part II carries 20 marks.

Part I

N.B. Each question in Part I carries 6 marks.

1. Let the positive integers a, b, c be such that $a \ge b \ge c$ and $(a^x - b^x - c^x)(x-2) > 0$ for all $x \ne 2$. Show that a, b, c are sides of a right angled triangle. Solution: Let $f(x) = (a^x - b^x - c^x)$ where $x \in \mathbb{R}$. For x < 2 implies f(x) < 0For x > 2 implies f(x) > 0By continuity of f(x) we have $\lim_{x\to 2} f(x) = f(2) = 0$ Thus $a^2 = b^2 + c^2$

2. Find all real numbers x, y such that the fractional part of $\frac{x+4y+1}{x^2+y^2+19}$ is $\frac{1}{2}$. Solution: Note that since $x^2 + y^2 + 19 > 0$ and $\{\frac{x+4y+1}{x^2+y^2+19}\}$ is $\frac{1}{2}$, we have x+4y+1 > 0. We can prove that $(x+4y+1) < (x^2+y^2+19)$. Since $x^2 - x + y^2 - 4y + 18 = (x-1/2)^2 + (y-4)^2 + 7/4 > 0$, we have $\{\frac{x+4y+1}{x^2+y^2+19}\} = \frac{x+4y+1}{x^2+y^2+19} = \frac{1}{2}$ Thus $2x + 8y + 2 = x^2 + y^2 + 19$ i.e. $(x-1)^2 + (y-4)^2 = 0$. We get (x,y) = (1,4).

- 3. Let f be a quadratic polynomial. Show that there exist quadratic polynomials g, h such that f(x)f(x+1) = g(h(x)). Solution: $f(x) = a(x - \alpha)(x - \beta)$ $f(x+1) = a(x - \alpha + 1)(x - \beta + 1)$ $f(x) * f(x+1) = a^2(x^2 - x(\alpha + \beta - 1) + \alpha\beta - \alpha) * (x^2 - x(\alpha + \beta - 1) + \alpha\beta - \beta)$ Define $g(x) = a^2(x - \alpha)(x - \beta)$ $h(x) = x^2 - x(\alpha + \beta - 1) + \alpha\beta$
- 4. Determine the number of all $m \times n$ matrices with entries 0 or 1 such that the number of 1's in each row and the number of 1's in each column are all even. Solution:

Fill m-1 by n-1 submatrix in any way. The number of ways to do this is $2^{(m-1)(n-1)}$. Since only 0 and 1 is allowed as entry and we have to just take care of parity, the remaining entries in the last row and column are uniquely forced. Thus the number of required $m \times n$ matrices is $2^{(m-1)(n-1)}$.

5. Find all non-negative integer solutions to the system of equations

3

$$3x^{2} - 2y^{2} - 4z^{2} + 54 = 0$$

$$5x^{2} - 3y^{2} - 7z^{2} + 74 = 0$$

Solution: Multiplying first equation by 5 and second by 3 we get

$$15x^{2} - 10y^{2} - 20z^{2} + 5 * 54 = 0$$

$$15x^{2} - 9y^{2} - 21z^{2} + 74 * 3 = 0$$

Substracting the second equation from the first, we get

$$z^2 - y^2 = -48$$

 $(y - z)(y + z) = 48$

Trying the pairs 2×24 , 6×8 , 4×12 y - z = 2, y + z = 24, gives y = 13, z = 11 gives x = 16y - z = 6, y + z = 8, gives y = 7, z = 1 gives x = 4y - z = 4, y + z = 12 gives y = 8, z = 4 does not give a valid x.

Part II

N.B. Each question in Part II carries 10 marks.

- 1. Let $f:[0,1] \to \mathbb{R}$ be a differentiable function such that f' is continuous and f(0) = 0, f(1) = 1.
 - (a) Show that there exists x_1 in (0, 1) such that $\frac{1}{f'(x_1)} = 1$. [1]

(b) Show that there exist distinct x_1, x_2 in (0, 1) such that $\frac{1}{f'(x_1)} + \frac{1}{f'(x_2)} = 2$. [4]

(c) Show that for a positive integer n, there exist distinct x_1, x_2, \dots, x_n in (0, 1)such that $\sum_{i=1}^{n} \frac{1}{f'(x_i)} = n$. [5]

Solution:

If $f'(x) \ge 1$ f(x)then $f(x) \ge x$ Since f(0) = 0, f(1) = 1 we have $\frac{f(1) - f(0)}{1 - 0} = f'(c)$ Therefore result is true for n = 1. If $f'(x) \ge 1 \forall x$, then $\frac{f(x)}{x} = f'(c_1) \ge 1$ Therefore $f(x) \ge x$. If $f(x_0) > x_0$, then $1 - f(x_0) < 1 - x_0$ $f'(c_2) = \frac{1 - f(x_0)}{1 - x_0} < 1$ which is a contradiction. Thus f(x) = x. There exists $a, b \in \mathbb{R}$ such that f'(a) < 1 and f'(b) > 1Therefore $[1 - \epsilon, 1 + \epsilon] \subseteq Ran(f')$. Therefore we can find x_1 , such that $f'(x_1) = 1 - \epsilon/2 \text{ i.e. } \frac{1}{f'(x_1)} = \frac{2}{2 - \epsilon}.$ Now we want to find x_2 such that $f'(x_2)$ satisfies $\frac{1}{f'(x_2)} = 2 - \frac{1}{f'(x_1)} = 2 - \frac{2}{2 - \epsilon} = \frac{2 - 2\epsilon}{2 - \epsilon} \text{ i.e. } f'(x_2) = \frac{2 - \epsilon}{2 - 2\epsilon}.$ This is definitely greater than 1

If $\frac{2-\epsilon}{2-2\epsilon} < 1+\epsilon$; then we can find such x_2 . Now $(1 + \epsilon)(2 - 2\epsilon) = 2 - 2\epsilon^2$. Assuming without loss of generality that $\epsilon < 1$; $2 - \epsilon < 2 - 2\epsilon^{2}$ Therefore $1 < \frac{2 - \epsilon}{2 - 2\epsilon} < 1 + \epsilon$ i.e. $\frac{2-\epsilon}{2-2\epsilon} \in \text{Range}(f')$ Therefore it is possible to select x_2 such that $\frac{1}{f'(x_1)} + \frac{1}{f'(x_2)} = 2$ Now $\frac{1}{f'(x_1)} < 1 < \frac{1}{f'(x_2)}$ Therefore $\exists \epsilon'$ such that

 $\frac{1}{f'(x_1)} < 1 - \epsilon' \quad 1 + \epsilon' < \frac{1}{f'(x_2)},$ i.e. in particular $[1 - \epsilon', 1 + \epsilon'] \subseteq \text{Range}(f)$ By similar argument $\exists x_3$ and x_4 such that $\frac{1}{f'(x_3)} + \frac{1}{f'(x_4)} = 2$

Therefore $\frac{1}{f'(x_1)} + \frac{1}{f'(x_2)} + \frac{1}{f'(x_3)} + \frac{1}{f'(x_4)} = 4$ and by contradiction x_1, x_2, x_3, x_4 are distinct. We can continue this process and get $x_1, x_2, x_3, \ldots, x_{2n}$ all distinct such that $\sum_{i=1}^{n} \frac{1}{f'(x_i)} = 2k$. We have already seen that there exists c = x such that $f'(x) \stackrel{i=1}{=} 1$. Since $f'(x_i) \neq 1 \forall i = 1, 2, ..., 2k$; this c is different from all x_i . Thus $\exists 2k+1$ points such that $\sum_{i=1}^{2k+1} \frac{1}{f'(x_i)} = 2k+1.$

- 2. Let \mathcal{P}_n denote the collection of polynomials of degree n such that the polynomial and all its derivatives have integer roots.
 - (a) Find a polynomial in \mathcal{P}_2 having at least two distinct roots. [2]

[3]

- (b) Find a polynomial in \mathcal{P}_3 having at least two distinct roots.
- (c) For any polynomial P in \mathcal{P}_n , show that the arithmetic mean of all roots of [5] P is also an integer.

Solution:

i) Let $f = (x - \alpha)(x - \beta)$; then $f' = (x - \alpha) + (x - \beta) = 2x - (\alpha + \beta)$ Thus the condition is $\alpha + \beta$ must be even. ii) Let $f = (x - \alpha)(x - \beta)(x - \gamma)$ Then $f' = (x - \alpha)(x - \beta) + (x - \alpha)(x - \gamma) + (x - \beta)(x - \gamma)$ Let $f = (x - \alpha)^2 (x - \gamma)$. Then $f' = (x - \alpha)^2 + 2(x - \alpha)(x - \beta)$ $f'' = 2(x - \alpha) + 2(x - \alpha) + 2(x - \beta) = 4(x - \alpha) + 2(x - \beta)$ $= 6x - 4\alpha - 2\beta$ $f'' = 0 \text{ if } x = \frac{4\alpha + 2\beta}{6}$ So $6|4\alpha + 2\beta$. Put $\beta = 1$ and $\alpha = 4$. We can take $f(x) = (x - 4)^2(x - 1)$. iii) Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \in P_n$. Let the roots of p(x) be $\alpha_1, \alpha_2, \ldots, \alpha_n$ Now $p'(x) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \ldots + a_1$ $p''(x) = n(n-1)a_n x^{n-2} + (n-1)(n-2)a_{n-1}x^{n-3} + \ldots + 2a_2$ and so on. $p^{(n-1)}(x) = n!a_n x + (n-1)!a_{n-1}$ Since $p^{(n-1)}(x)$ has integer roots, it is equal to $\frac{-(n-1)!a_{n-1}}{n!a_{n-1}}$ $\frac{\sum_{i=1}^{n} \alpha_i}{n} = \frac{-(n-1)a_{n-1}}{na_n}$ is thus an integer.

4