
MADHAVA MATHEMATICS COMPETITION

Date: 29/01/2023 Max. Marks: 100
Solutions and Scheme of marking:
N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50
marks.

Part I
N.B. Each question in Part I carries 2 marks.

1. The number of positive divisors of 224 − 1 is
(A) 192 (B) 48 (C) 96 (D) 24
Ans:(C)

2. The equation Re (z2) = 0 represents
(A) a circle (B) a pair of straight lines (C) an ellipse (D) a parabola
Ans:(B)

3. If A =

(
α 2
2 α

)
and detA3 = 125, then the value of α is

(A) ±1 (B) ±2 (C) ±3 (D) ±5.
Ans: (C).

4. Let A,B,C be three non-collinear points in a plane. The number of points at a distance
1 from A, 2 from B and 3 from C is
(A) exactly 1 (B) at most 1 (C) at most 2 (D) always 0.
Ans: (B)

5. Let A = {x ∈ [−2, 3] : cosx > 0}. Then
(A) inf A = 0 (B) supA = π (C) inf A = −π/2 (D) supA = 3.
Ans: (C)

6. Let {an} be a sequence of real numbers such that |an+1 − an| ≤
2023

n
|an − an−1|, ∀n.

Then the sequence {an} is
(A) not Cauchy (B) Cauchy but not convergent (C) convergent (D) not bounded.
Ans: (C)

7. Let f : R → R be a continuous function and F is a primitive of f (i.e. F ′ = f). If
3x2F (x) = f(x) for all x ∈ R then f(x) =
(A) ex

3
(B) 3x2ex

3
(C) x2ex

2
(D) 3xex

3
.

Ans: (B)

8. 1× 2− 2× 3 + 3× 4− 4× 5 + · · · − (2022)× (2023) =
(A) (−2)(1011)(1012) (B) −(1011)(1012)
(C) (−4)(1011)(1012) (D) 2(1011)(1012).
Ans: (A)

9. The number of times the digit 7 is written while listing all integers from 1 to 1, 00, 000
is
(A) 104 (B) 5(10)4 − 1 (C) 105 (D) 5(10)4.
Ans: (D)

10. The differential equation y′
2 − (x+ sinx)y′ + x sinx = 0, with y(0) = 0 has

(A) unique solution (B) two solutions (C) no solution (D) four solutions.
Ans: (B)
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Part II
N.B. Each question in Part II carries 6 marks.

1. Consider f(x) = x[x2], where [x2] is the greatest integer less than or equal to x2. Find
the area of the region above X-axis and below f(x), 1 ≤ x ≤ 10.
Solution:
Observe that

f(x) =



x, 1 ≤ x <
√
2

2x,
√
2 ≤ x <

√
3

: :

99x,
√
99 ≤ x < 10

1000 x = 10

[4 Marks]

Thus, the area of the required region is
99∑
k=1

∫ √
k+1

√
k

kxdx =
99∑
k=1

k

2

[
x2

]√k+1√
k

=
99∑
k=1

k

2
= 99× 25 = 2475 [2 Marks]

2. In how many ways can numbers from 1 to 100 be arranged in a circle such that sum of
two integers placed opposite each other is the same? (arrangements are equivalent up
to rotation.)
Solution:
It is clear that opposite pairs must be (1, 100), (2, 99), . . . , (50, 51) [1 Mark]
1 can be placed anywhere and 100 must be placed opposite to 1. This can be done in
exactly one way as all places are identical to start with.
Now, 2 has 98 options and then 99 has to be placed opposite to 2.
3 has 96 options and then 96 must be placed opposite to 3 and so on.
By multiplication principle, the required number of ways is
98× 96× 94× · · · × 2 = 249 × 49!. [5 Mark]

3. Find all triplets (x, y, z) of integers satisfying x2 + y2 + z2 = 16(x+ y + z).
Solution:
Let (x, y, z) be a triplet satisfying the given condition.
Thus, x2 + y2 + z2 = 16(x+ y + z). . . . . . (*)
Every square is congruent to 0, 1 or 4 modulo 8, in fact, odd squares give remainder 1
when divided by 8. Since RHS of (*) is divisible by 8, so must be the LHS.
Hence, x, y, z must be even integers. [3 Marks]
Let x = 2x1, y = 2y1 and z = 2z1, for some x1, y1, z1 ∈ Z.
Substituting in (*), we get, x21 + y21 + z21 = 8(x1 + y1 + z1).. . . . . . (**)
By similar argument as above, we must have x1, y1, z1 must be even.
Let x1 = 2x2, y1 = 2y2 and z1 = 2z2, for some x2, y2, z2 ∈ Z.
Substituting in (**), we get, x22 + y22 + z22 = 4(x2 + y2 + z2).. . . . . . (***)
Once again, arguing in similar manner, we must have x2, y2, z2 to be even integers.
Let x2 = 2x3, y2 = 2y3 and z2 = 2z3, for some x3, y3, z3 ∈ Z.
Substituting in (***), we get, x23 + y23 + z23 − 2(x3 + y3 + z3) = 0.
That is, (x3 − 1)2 + (y3 − 1)2 + (z3 − 1)2 = 3
This implies, each of |x3 − 1|, |y3 − 1| and |z3 − 1| must be 1.
Hence, x3, y3, z3 are either 2 or 0 and thus, x, y, z can be either 16 or 0.
Thus, all possible triplets satisfying given condition are: (16, 16, 16), (16, 16, 0), (16, 0, 16),
(0, 16, 16), (0, 0, 16), (0, 16, 0), (16, 0, 0), (0, 0, 0). [3 Marks]

4. Suppose A is a singular matrix of order 3 with complex entries all of which having
absolute value 1. Show that two rows or two columns of the matrix A are proportional.
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Solution:
By suitable multiplication on each row and column, the matrix A can be written as

k

1 1 1
1 a b
1 c d

 , where a, b, c, d, k are complex numbers of absolute value 1. [2 Marks]

The relation det(A) = 0 gives (a − 1)(d − 1) = (b − 1)(c − 1). Taking the complex
conjugates of the above equation and using the fact that each number is of absolute
value one, to get ad(a− 1)(d− 1) = bc(b− 1)(c− 1). [2 Marks]
If (a − 1)(d − 1) = 0, then (b − 1)(c − 1) = 0 and two rows or columns are equal to
(1 1 1) and result is proved.
Suppose (a − 1)(d − 1) = (b − 1)(c − 1) ̸= 0. Then ad = bc and ad = bc. From
(a−1)(d−1) = (b−1)(c−1) we get a+d = b+c. Hence {a, d} = {b, c} or a = b = c = d.
It follows that the bottom two rows or the rightmost two columns are equal. [2 Marks]

5. Let f : R → R be a continuous function satisfying f3(x) = x. Prove that f2(x) = x.
Solution:
We first prove that f is injective.
Since, f(x) = f(y) =⇒ f3(x) = f3(y) =⇒ x = y
hence, f is an injective function.
Also, f is continuous and hence it is monotonic. [2 Marks]
In case, f is increasing then for each x ∈ R,
case(i) x < f(x):
x < f(x) =⇒ f(x) < f2(x) =⇒ f2(x) < f3(x) = x, which is a contradiction.
case (ii) x > f(x):
x > f(x) =⇒ f(x) > f2(x) =⇒ f2(x) > f3(x) = x, which is a contradiction.
Hence, if f is increasing then f(x) = x, for each x ∈ R and hence we get,
f2(x) = x, ∀x ∈ R. [2 Marks]
Now, let f be decreasing.
x < y =⇒ f(x) > f(y) =⇒ f2(x) < f2(y) and thus f2 is increasing.
case (i) x < f2(x):
x < f2(x) =⇒ f2(x) < f4(x) = f(x) i.e. f2(x) < f(x) and thus we get,
f4(x) < f3(x) = x. This gives, x < f2(x) < f4(x) < f3(x) = x. This is a contradiction.
case (ii) x > f2(x):
x > f2(x) =⇒ f2(x) > f4(x) i.e. f2(x) > f(x) and thus we get,
f4(x) > f3(x) = x. This gives, x > f2(x) > f4(x) > f3(x) = x. This is a contradiction.
Hence, we must have f2(x) = x, for all x ∈ R. [2 Marks]

Part III

1. Find [12]

(a) lim
n→∞

gcd(1, 6) + gcd(2, 6) + · · ·+ gcd(n, 6)

1 + 2 + · · ·+ n

(b) lim
n→∞

lcm(1, 6) + lcm(2, 6) + · · ·+ lcm(n, 6)

1 + 2 + · · ·+ n

Solution:
(a) We first calculate the numerator.
6k+6∑

n=6k+1

gcd(n, 6) = gcd(6k + 1, 6) + gcd(6k + 2, 6) + gcd(6k + 3, 6) + gcd(6k + 4, 6) +

gcd(6k + 5, 6) + gcd(6k + 6, 6) = 1 + 2 + 3 + 4 + 5 + 6 = 15. [3 Marks]
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Then
m∑
k=1

6k+6∑
n=6k+1

gcd(n, 6) = 15m. Let n = 6m. Now

lim
n→∞

gcd(1, 6) + gcd(2, 6) + · · ·+ gcd(n, 6)

1 + 2 + · · ·+ n
= lim

m→∞

(15m)(2)

6m(6m+ 1)
= 0.

[3 Marks]
(b) We first calculate the numerator.
6k+6∑

n=6k+1

lcm(n, 6) = lcm(6k + 1, 6) + lcm(6k + 2, 6) + lcm(6k + 3, 6) + lcm(6k + 4, 6) +

lcm(6k+5, 6)+ lcm(6k+6, 6) = 6(6k+1)+ 6(3k+1)+ 6(2k+1)+ 6(3k+2)+ 6(6k+
5) + 6(k + 1) = 126k + 66. [3 Marks]

Then

m∑
k=1

(126k + 66) = 66m+ 126
m(m+ 1)

2
= 66m+ 63m(m+ 1).

Let n = 6m. Now

lim
n→∞

lcm(1, 6) + lcm(2, 6) + · · ·+ lcm(n, 6)

1 + 2 + · · ·+ n
= lim

m→∞

2[66m+ 63m(m+ 1)]

6m(6m+ 1)
=

63

18
=

7

2
.

[3 Marks]

2. Let a, b, c be real numbers such that a2 + b2 + c2 = 4. [12]

(a) Find the value of the determinant of a matrix A =

a+ b b+ c c+ a
b+ c c+ a a+ b
c+ a a+ b b+ c

 .

(b) Find the maximum and minimum value of the above determinant.

Solution:
Let a, b, c be real numbers such that a2 + b2 + c2 = 4. Consider

D =

∣∣∣∣∣∣
a+ b b+ c c+ a
c+ a a+ b b+ c
b+ c c+ a a+ b

∣∣∣∣∣∣
We add R1 + (R2 +R3)

D =

∣∣∣∣∣∣
a+ b b+ c c+ a
c+ a a+ b b+ c
b+ c c+ a a+ b

∣∣∣∣∣∣ = 2(a+ b+ c)

∣∣∣∣∣∣
1 1 1

c+ a a+ b b+ c
b+ c c+ a a+ b

∣∣∣∣∣∣
Now, R2 − (c+ a)R1, R3 − (b+ c)R1 gives

D = 2(a+ b+ c)

∣∣∣∣∣∣
1 1 1
0 b− c b− a
0 a− b a− c

∣∣∣∣∣∣
= 2(a+ b+ c)

(
(b− c)(a− c) + (a− b)2

)
= 2(a+ b+ c)

(
a2 + b2 + c2 − ab− bc− ac

)
[5 Marks]

Let s = a+ b+ c. Hence, s2 = a2 + b2 + c2 + 2(ab+ bc+ ac). [3 Marks]

Hence, D = f(s) = 2s

(
4− s2 − 4

2

)
= s(12− s2) = 12s− s3.

Then f ′(s) = 12 − 3s2 = 0 gives s = ±2. Now f ′′(s) = −6s is positive at s = −2 and
negative at s = 2. Hence the maximum value of D is 16 at (−2, 0, 0) and the minimum
value of D is −16 at (2, 0, 0). [4 Marks]
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3. For each t ∈ R let Lt be the line segment joining the points (0, 1) and (t, 0). Let Pt

be the point of intersection of the line segment Lt with the parabola y = x2. Define
function f : R → R as f(t) = y coordinate of point Pt. Answer the following with
justification. [13]

(a) Is f a bounded function?

(b) Is f a continuous function?

(c) Find lim
t→∞

f(t).

(d) Is f differentiable at 0?

Solution :
The equation of line Lt is : y = 1− x

t . Thus, x− coordinate of the point of intersection

of Lt with the parabola y = x2 satisfy 1− x
t = x2. This gives x = −

1
t ±

√
1
t2
+ 4

2

For t > 0, we get x =
−1 +

√
1 + 4t2

2t
=

2t

1 +
√
4t2 + 1

and thus, y = x2 =
4t2

4t2 + 2 + 2
√
4t2 + 1

.

Hence, f(t) =
4t2

4t2 + 2 + 2
√
4t2 + 1

for t ≥ 0. [5 Marks]

Further, as g(x) = x2 is an even function from R to R, it can be observed by definition
of f that f is an even function. Hence, for t < 0, we get,

f(t) = f(−t) =
4(−t)2

4(−t)2 + 2 + 2
√

4(−t)2 + 1
=

4t2

4t2 + 2 + 2
√
4t2 + 1

Thus, we get, f(t) =
4t2

4t2 + 2 + 2
√
4t2 + 1

, for all t ∈ R. [3 Marks]

(a) Since, 4t2 < 4t2 + 2 + 2
√
4t2 + 1, ∀t ∈ R, we get, 0 ≤ f(t) < 1, ∀t ∈ R.

Hence, f is bounded. [1 Mark]

(b) By continuity of polynomials, square-root function and algebra of continuous func-
tions, function f is a continuous function. [1 Mark]

(c) lim
t→∞

f(t) = lim
t→∞

4t2

4t2 + 2 + 2
√
4t2 + 1

=
4

4
= 1. [1 Mark]

(d) As f(0) = 0, Consider lim
t→0

f(t)

t
= lim

t→0

4t

4t2 + 2 + 2
√
4t2 + 1

= 0 and hence, f is

differentiable at 0 and f ′(0) = 0. [2 Marks]

4. The sequence {qn(x)} of polynomials is defined by q1(x) = 1 + x, q2(x) = 1 + 2x and
for m ≥ 1 by

q2m+1(x) = q2m(x) + (m+ 1)xq2m−1(x),

q2m+2(x) = q2m+1(x) + (m+ 1)xq2m(x).

Let xn be the largest real solution of qn(x) = 0. Prove that [13]

(a) the sequence {xn} is increasing.

(b) x2m+2 >
−1

m+ 1
for m ≥ 1.

(c) the sequence {xn} converges to 0.

Solution :
(a) Since each qn(x) has non-negative coefficients, any real zero cannot be positive. [1
Mark]
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It is easy to check that q1(x) and q2(x) each have a negative zero. Suppose for some
n ≥ 2, it has been established that qi(0) > 0 and that each qi(x) has at least one
negative zero and that the greatest such zero xi satisfies xi−1 < xi (2 ≤ i ≤ n). Then
for 1 ≤ i ≤ j ≤ n, qi(x) > 0 for xj < x ≤ 0. From the recursion relations, it follows
that qn+1(0) > 0 and qn+1(xn) < 0, so that qn+1(x) has at least one zero in the interval
(xn, 0). Thus, there is a largest real zero xn+1 and it satisfies xn < xn+1 < 0. [3 Marks]
(b) From the recurrence relations, we find that

q2m+2
(−1)

m+ 1
= −q2m−1

(−1)

m+ 1
.

If q2m+2
(−1)

m+ 1
< 0, then x2m+2 >

(−1)

m+ 1
. On the other hand, if q2m+2

(−1)

m+ 1
> 0, then

q2m−1
(−1)

m+ 1
< 0, so that x2m+2 > x2m−1 >

(−1)

m+ 1
. [5 Marks]

(c) If r is any positive number, we can choose a positive integer m such that −r <
(−1)/(m + 1) < 0. Then for n ≥ 2m + 2, − r < xn < 0. Hence the sequence {xn}
converges to 0. [4 Marks]
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