
MADHAVA MATHEMATICS COMPETITION, January 8, 2017
Solutions and scheme of marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50
marks.

Part I
N.B. Each question in Part I carries 2 marks.

1. The number
√

2eiπ is:
A) a rational number.
B) an irrational number.
C) a purely imaginary number.
D) a complex number of the type a+ ib where a, b are non-zero real numbers.
Answer: B
The number is −

√
2 using the relation eiπ = −1.

2. Let P =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

. The rank of P 4 is: A) 1 B) 2 C) 3 D) 4.

Answer: D
Det P 6= 0,⇒ Det P 4 6= 0. Thus rank of P 4 is 4.

3. Let y1(x) and y2(x) be the solutions of the differentiable equation
dy

dx
= y + 17 with

initial conditions y1(0) = 0, y2(0) = 1. Which of the following statements is true?
A) y1 and y2 will never intersect.
B) y1 and y2 will intersect at x = e.
C) y1 and y2 will intersect at x = 17.
D) y1 and y2 will intersect at x = 1.
Answer: A
Solving the differentiable equation we get y1 = −17 + 17ex and y2 = −17 + 18ex. The
two curves never intersect.

4. Suppose f and g are differentiable functions and h(x) = f(x)g(x). Let h(1) = 24,
g(1) = 6, f ′(1) = −2, h′(1) = 20. Then the value of g′(1) is
A) 8 B) 4 C) 2 D) 16.
Answer: A
h(x) = f(x)g(x). Thus we get h

′
(x) = f

′
(x)g(x) + f(x)g

′
(x)

h
′
(1) = f

′
(1)g(1) + f(1)g

′
(1). Therefore 20 = (−2)(6) + f(1)g

′
(1).

f(1)g
′
(1) = 32. Now h(1) = f(1)g(1). Therefore 24 = 6f(1).

Thus f(1) = 4 and g
′
(1) = 8.

5. In how many regions is the plane divided when the following equations are graphed,
not considering the axes? y = x2, y = 2x

A) 3 B) 4 C) 5 D) 6.
Answer: D
Plot graph of the two functions y = x2 and y = 2x.

6. For 0 ≤ x < 2π, the number of solutions of the equation sin2 x+3 sinx cosx+2 cos2 x = 0
is
A) 1 B) 2 C) 3 D) 4.
Answer: D
Note cos2(x) 6= 0. Dividing by cos2(x) we get tan2(x)+3 tanx+2 = 0. Thus tanx = −1
or −2. Since tanx has period π and range of tanx is (−∞,∞), the number of solutions
of the given equation in the interval 0 ≤ x < 2π is equal to 4.
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7. The minimum value of the function f(x) = xx, x ∈ (0,∞) is

A)

(
1

10

) 1
10

B) 10
1
10 C)

1

e
D)

(
1

e

) 1
e

.

Answer: D
y = xx. Taking log on both sides ln y = x lnx.
1

y

dy

dx
= lnx + 1. Solving

dy

dx
= 0 ⇒ lne x = −1. Thus minimum value is obtained at

x = 1/e and is

(
1

e

) 1
e

. Note that
d2y

dx2
(
1

e
) > 0.

8. Let f be a twice differentiable function on R. Also f
′′
(x) > 0 for all x ∈ R. Which of

the following statements is true?
A) f(x) = 0 has exactly two solutions on R.
B) f(x) = 0 has a positive solution if f(0) = 0 and f

′
(0) = 0.

C) f(x) = 0 has no positive solution if f(0) = 0 and f
′
(0) > 0.

D) f(x) = 0 has no positive solution if f(0) = 0 and f
′
(0) < 0.

Answer: C
f

′′
(x) > 0 ⇒ f

′
(x) is increasing. Also f

′
(0) > 0 ⇒ f

′
(x) > 0 if x > 0. ⇒ f(x) = 0 has

no positive solution.

9. If x2 + x+ 1 = 0, then the value of

(
x+

1

x

)2

+

(
x2 +

1

x2

)2

+ . . .+

(
x27 +

1

x27

)2

is

A) 27 B) 54 C) 0 D) -27.
Answer: B(
x+

1

x

)2

+

(
x2 +

1

x2

)2

+ · · ·+
(
x27 +

1

x27

)2

=

(
x2 + 1

x

)2

+

(
x4 + 1

x2

)2

+ · · ·+
(
x54 + 1

x27

)2

= 9((−1)2 + (−1)2 + 22) = 54.

10. Let M=

(
−2 −1
3 1

)
. Then M2017 =

A)

(
1 0
0 1

)
B)

(
−22017 −1
32017 1

)
C)

(
−2 3
−1 1

)
D)

(
−2 −1
3 1

)
.

Answer: D
Note M3 = I . Thus M2016 = I and M2017 = M.

Part II
N.B. Each question in Part II carries 6 marks.

1. Let a, b, c be real numbers such that a+ b+ c =
1

a
+

1

b
+

1

c
and abc = 1. Prove that at

least one of a, b, c is 1.

Solution: Let λ = a+ b+ c. Then λ = a+ b+ c =
bc+ ac+ ab

abc
= bc+ ac+ ab. 2

marks
The numbers a, b, c are roots of the polynomial x3 − λx2 + λx− 1. Observe that x = 1
is one of the roots of this polynomial. 4 marks

2. Let c1, c2, . . . , c9 be the zeros of the polynomial z9 − 6z7 + 12z6 + 18z4 − 24z3 + 30z2 −

z+2017. If S(z) =
9∑

k=1

|z−ck|2, then prove that S(z) is constant on the circle |z| = 100.

Solution: Observe that
9∑

k=1

ck = 0. 2 marks
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S(z) =

9∑
k=1

|z − ck|2 =

9∑
k=1

(z − ck)(z − ck) =

9∑
k=1

(zz − zck − ckz + ckck) =

9∑
k=1

|z|2 +

9∑
k=1

|ck|2− z
9∑

k=1

ck − z
9∑

k=1

ck =

9∑
k=1

|z|2 +

9∑
k=1

|ck|2 =

9∑
k=1

(100)2 +

9∑
k=1

|ck|2 = constant. 4

marks

3. Let f be a monic polynomial with real coefficients. Let lim
x→∞

f
′′
(x) = lim

x→∞
f

(
1

x

)
and

f(x) ≥ f(1) for all x ∈ R. Find f.
Solution: Let f(x) = a0 + a1x + a2x

2 + · · · + anx
n. Then f ′(x) = a1 + 2a2x +

3a3x
2 + · · · + nanx

n−1 and f ′′(x) = 2a2 + 6a3x + · · · + n(n − 1)anx
n−2. Also f(

1

x
) =

a0 + a1(
1

x
) + · · · + an(

1

x
)n. Now lim

x→∞
f

(
1

x

)
= a0. Therefore lim

x→∞
f

′′
(x) = a0. Hence

f ′′(x) = 2a2 and a3 = a4 = · · · = an = 0. 3 marks

Since f is monic, a2 = 1. Now lim
x→∞

f
′′
(x) = lim

x→∞
f

(
1

x

)
implies a0 = 2a2 = 2. Also

f(x) ≥ f(1) for all x ∈ R implies f has minimum at x = 1. Therefore f ′(1) = 0. Hence
a1 + 2a2 = 0. Therefore a1 = −2. Hence f(x) = x2 − 2x+ 2. 3 marks

4. Call a set of integers non − isolated if for every a ∈ A at least one of the numbers a− 1
and a+1 also belongs to A. Prove that the number of 5−element non− isolated subsets
of {1, 2, . . . , n} is (n− 4)2.
Solution: Let {a1, a2, a3, a4, a5} be 5-element non − isolated subset of {1, 2, . . . , n}
such that a1 < a2 < a3 < a4 < a5. Then a2 = a1 + 1, a4 = a5 − 1. Further a3 = a2 + 1
or a3 = a4−1. Clearly 1 ≤ a1 ≤ n−4. For each choice of a1, a5 has (n−3)−a1 choices.
For a3, there are 2 choices. So total number of such sets is 2[(n−4)+(n−5)+ · · ·+1] =

2
(n− 4)(n− 3)

2
= (n− 4)(n− 3). 4 marks

But a3 = a2 + 1 as well as a3 = a4− 1 gets counted twice. So total number of such sets
is (n− 4)(n− 3)− (n− 4) = (n− 4)(n− 4) = (n− 4)2. 2

5. Find all positive integers n for which a permutation a1, a2, . . . , an of {1, 2, . . . , n} can be
found such that 0, a1, a1+a2, a1+a2+a3, . . . , a1+a2+ . . .+an leave distinct remainders
modulo n+ 1.
Solution: Let a1, a2, . . . , an be a permutation of {1, 2, . . . , n} such that 0, a1, a1 +
a2, a1 + a2 + a3, . . . , a1 + a2 + . . . + an leave distinct remainders modulo n + 1. If n is

even, then a1 +a2 + · · ·+an =
n(n+ 1)

2
≡ 0( mod n+ 1). So remainders modulo n+ 1

can not be distinct. 3 marks
Let n be odd. Then choose a1 = 1, a2 = n − 1, a3 = 3, a4 = n − 3 and so on. Then
a1 ≡ 1( mod n + 1), a1 + a2 ≡ n( mod n + 1), a1 + a2 + a3 = n + 3 ≡ 2( mod n +
1), a1 + a2 + a3 + a4 = 2n ≡ n− 1( mod n+ 1), · · · . This gives required permutation.
3 marks

Part III

1. Do there exist 100 lines in the plane, no three concurrent such that they intersect ex-
actly in 2017 points? [12]
Solution: Consider k sets of parallel lines having respectively m1,m2, · · · ,mk lines
in each set. Then we need to solve the equations m1 + m2 + · · · + mk = 100 and∑
i<j

mimj = 2017. 4 marks(∑
mi

)2
=
∑

m2
i + 2

∑
i<j

mimj
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Therefore
∑
m2
i = 10, 000− 2(2017) = 5966. Thus we need to find 100 numbers satis-

fying
∑
mi = 100 and

∑
m2
i = 5966. 3 marks

We can get any one of the following solutions:

(a) 75, 18, 3, 2, 2

(b) 77, 3, 2, 2, 2, 2, 1(12 times)

(c) 77, 4, 2, 1(17 times) 5 marks

2. On the parabola y = x2, a sequence of points Pn(xn, yn) is selected recursively where
the points P1, P2 are arbitrarily selected distinct points. Having selected Pn, tangents
drawn at Pn−1 and Pn meet at say Qn. Suppose Pn+1 is the point of intersection of
y = x2 and the line passing through Qn parallel to Y-axis. Under what conditions on
P1, P2

(a) both the sequences {xn} and {yn} converge?

(b) {xn} and {yn} both converge to 0? [13]

Solution:

(a) Since yn = x2n, it is enough to discuss the convergence of {xn}. Tangents at xn, xn−1
are given by y = x2n + 2xn(x− xn) = 2xnx− x2n and y = 2xn−1x− x2n−1.

Solving we get, xn+1 =
xn−1 + xn

2
. Therefore Pn+1

(
xn−1 + xn

2
, (
xn−1 + xn

2
)2
)
.

4 marks
Now all xn are within the interval [x1, x2] and all are distinct. Hence {xn} con-
verges. 3
marks

(b) We first consider a special case where x1 = 0, x2 = 1. Then the sequence {xn} is

0, 1,
1

2
,
3

4
,
1

2
+

1

8
,
1

2
+

1

8
+

1

16
,
1

2
+

1

8
+

1

32
, · · · . Its sub sequence is

1

2
,
1

2
+

1

8
,
1

2
+

1

8
+

1

32
, · · · which are partial sums of the geometric series

∞∑
n=0

1

22n+1
which converges

and sum is given by
2

3
. Thus in this case xn convereges to 2

3 .

Now in general, for any x1 < x2, we define zn−1 =
xn − x1
x2 − x1

. Note that z0 = 0 and

z1 = 1 and the sequence zn satisfies the relation zn+1 =
zn−1 + zn

2
. Thus by the

special case above, zn converges to 2
3 . Now observe that the limit of xn is the real

number x which divides the interval [x1, x2] in the ratio 2 : 1. For x = 0, we need

to take x1 6= 0 and x2 = −1

2
x1. 6 marks

3. (a) Show that there does not exist a 3-digit number A such that 103A+A is a perfect
square.

(b) Show that there exists an n-digit (n > 3) number A such that 10nA+A is a perfect
square. [12]

Solution:

(a) If 103A + A = A(1001) is a perfect square, then 7|A, 11|A and 13|A. Therefore
A ≥ 1001. That is A has bigger than or equal to 4 digits. 3 marks

(b) For some n if 10nA + A = A(10n + 1) is a perfect square, then 10n + 1 must be
divisible by a square bigger than 1. Because if no perfect square divides 10n + 1,
then all prime divisors of 10n + 1 must appear in factorization of A. This makes
A ≥ 10n + 1, but A < 10n + 1. Therefore 10n + 1 has a square factor. 4 marks

4



Now observe that 1011+1 = (11)(1010−109+108−· · ·−10+1) = (11)(9090909091)
and thus 121 divides 1011 + 1. 2 marks

Thus we can choose A as
1011 + 1

121
× 9 so that 1010 ≤ A < 1011 and (10n + 1)A is

a perfect square. 3 marks

4. For n× n matrices A,B, let C = AB −BA. If C commutes with both A and B, then

(a) Show that ABk −BkA = kBk−1C for every positive integer k.

(b) Show that there exists a positive integer m such that Cm = 0. [13]

Solution:

(a) The proof is by induction. The result is true for k = 1, 2. AB − BA = C and
AB2 −B2A = (AB −BA)B +B(AB −BA) = CB +BC = 2BC. 1 marks
Assume that the result is true upto k − 1. ABk − BkA = (AB − BA)Bk−1 +
B(ABk−1 −Bk−1A) = CBk−1 +B(k − 1)Bk−2C = kBk−1C. 3 marks

(b) Hence for any polynomial q(x), Aq(B)−q(B)A = q′(B)C, where q′ is a derivative
of q. In particular, let p(x) be the characteristic polynomial of B. Now by Caley-
Hamilton Theorem,
0 = Ap(B)− p(B)A = p′(B)C. This proves p′(B)C = 0. 4 marks
0 = Ap′(B)C−p′(B)AC = (Ap′(B)−p′(B)A)C = p′′(B)C2. This proves p′′(B)C2 =
0. Inductively, we have p(k)(B)Ck = 0. Therefore for k = n, we have n!Cn = 0.
Hence Cn = 0. 5 marks
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