MADHAVA MATHEMATICS COMPETITION, January 8, 2017
Solutions and scheme of marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50
marks.

Part I
N.B. Each question in Part I carries 2 marks.

1. The number /26 is:
A) a rational number.
B) an irrational number.
C) a purely imaginary number.
D) a complex number of the type a + ib where a, b are non-zero real numbers.
Answer: B
The number is —v/2 using the relation e!™ = —1.

0

2. Let P = . The rank of P*is: A)1 B)2 C)3 D)4

O O = O
O = O O
o O o=

0
0
1
Answer: D

Det P # 0,= Det P* # 0. Thus rank of P? is 4.

d
3. Let y1(z) and ya2(x) be the solutions of the differentiable equation d—y =y + 17 with
x

initial conditions y;(0) = 0,y2(0) = 1. Which of the following statements is true?

A) y; and yo will never intersect.

B) y1 and yo will intersect at x = e.

C) y1 and yo will intersect at x = 17.

D) y1 and yo will intersect at = = 1.

Answer: A

Solving the differentiable equation we get y; = —17 + 17e” and yo = —17 4+ 18¢*. The
two curves never intersect.

4. Suppose f and g are differentiable functions and h(z) = f(z)g(z). Let h(1) = 24,
g(1) =6, f'(1) = =2, h'(1) = 20. Then the value of ¢'(1) is
A)8 B)4 C)2 D) 16
Answer: A
h(z) = F(x)g(@). Thus we get &' (z) = f (@)g(x) + F(x)g (2)
1) = £ (Ug(1) + F(1g' (1. Theretore 20 = (-2(6) = (1) (1),
f(1)g (1) = 32. Now h( ) = f(1)g(1). Therefore 24 = 6f(1).
Thus f(1) =4 and ¢ (1) = 8.

5. In how many regions is the plane divided when the following equations are graphed,
not considering the axes? y = 2%, y = 27
A)3 B) 4 C)5 D) 6.
Answer: D
Plot graph of the two functions y = 22 and y = 2*.

6. For 0 < z < 27, the number of solutions of the equation sin? +3sin x cos z+2 cos? z = 0
is
A1l B) 2 C)3 D) 4.
Answer: D
Note cos?(x) # 0. Dividing by cos?(x) we get tan?(x)+3tanz+2 = 0. Thus tanz = —1
or —2. Since tan z has period 7 and range of tan x is (—o0, 00), the number of solutions
of the given equation in the interval 0 < z < 27 is equal to 4.



7.

10.

The minimum value of the function f(z) = z*, x € (0,00) is
1

A) <110>1° B) 101 C)% D) (i)

Answer: D
y = x*. Taking log on both sides Iny = xInz.
1dy

= Inx + 1. Solving Y _0= Ine z = —1. Thus minimum value is obtained at
ydz dx

e 2

1
1) * 2y 1
x=1/e and is () . Note that ;l—y(f) > 0.

. Let f be a twice differentiable function on R. Also f"(z) > 0 for all # € R. Which of

the following statements is true?

A) f(x) = 0 has exactly two solutions on R.

B) f(x) = 0 has a positive solution if f(0) =0 and f (0) =

C) f(x) = 0 has no positive solution if f(0) =0 and f (0) > O

D) f(z) = 0 has no positive solution if £(0) =0 and f (0) < 0.

Answer: C

f'(x) >0 = f(z) is increasing. Also f(0) >0 = f (z) >0if > 0. = f(z) =0 has

no positive solution.

1
72

1\’ 1)? i
.If:c2+x—|—1:0,thenthevalueof(:U+) +<JJ2+> +...+<$27+27> is
- x

A) 27 B) 54 C)o D) -27.
Answer: B

(ro3) s (o) oo (o 2)
:<x;12+( 1>+...+<mj;1)

=9((—=1)2 + (~1)% 4 22) = 54.
-2 -1 2017
Let M= 3 1 . Then M =

10 —2017 - _q -2 3 -2 -1
V(3 ) B(E ) e () w3 )
Answer: D

Note M3 =T . Thus M?2016 = [ and M2017 = M.

Part I1

. Each question in Part II carries 6 marks.

1

1 1
. Let a, b, ¢ be real numbers such that a +b+c= — + 3 + — and abc = 1. Prove that at
a c

least one of a, b, c is 1.

Solution: Let A\=a+b+c. Then A\=a+b+c= bc+a7bc—|—ab = bc + ac + ab. 2
marks e

The numbers a, b, ¢ are roots of the polynomial 23 — Az? + Az — 1. Observe that = = 1
is one of the roots of this polynomial. 4 marks

. Let ¢1,¢a, ..., cg be the zeros of the polynomial 2° — 627 4+ 1225 + 182% — 2423 + 3022 —

9
z+2017. If S(z Z |z — cx|?, then prove that S(z) is constant on the circle |z| = 100.
k=1
9
Solution: Observe that Z ¢, = 0. 2 marks
k=1



9 9 9

9
S =) l—al’ =) -a)lz—a) =Y (:Z- 2t —aZ+atk) = »_| +
k =1

k=1 k=1 1
9 9 9 9 9
Z\ckP—zZTﬂ—EZ Z Z|2+Z|0k’2 Z 100)2+Z|0k\2:constant. 4
k=1 y k=1 k=1 =1 k=1 =1
marks

1" 1
. Let f be a monic polynomial with real coefficients. Let ILm f(x)= lim f () and

T—00 €T
f(x) > f(1) for all z € R. Find f.
Solution: Let f(z) = ap + a1z + as2? + -+ + a,a"™. Then f'(x) = a; + 2a27 +

1
3a3z? + -+ + napz™ ' and f’(x) = 2as + 6azx + - + n(n — 1)a,z" 2. Also f(;) =

T—00 T—00

1 1 1 "
ag+ai1(=) + -+ ap(=)". Now lim f <> = ag. Therefore lim f (x) = ap. Hence
x x x
f"(z) =2a2 and a3 = a4 =--- =a, =0. 3 marks
1 1
Since f is monic, ao = 1. Now hm f(x) = lim f <> implies ag = 2as = 2. Also

f(z)> f(1) forallz € R 1mphes f has minimum at x = 1. Therefore f’(1) = 0. Hence
a1 + 2az = 0. Therefore a; = —2. Hence f(z) = 22 — 2z + 2. 3 marks

. Call a set of integers non — isolated if for every a € A at least one of the numbers a — 1
and a+ 1 also belongs to A. Prove that the number of 5—element non — isolated subsets
of {1,2,...,n} is (n —4)%

Solution: Let {ai,a2,as,a4,a5} be 5-element non — isolated subset of {1,2,...,n}
such that a; < as < az < aq < as. Then a9 = a1 +1,a4 = a5 — 1. Further a3 =as + 1
or ag = aq — 1. Clearly 1 < a; < n—4. For each choice of aj, a5 has (n—3) — a; choices.
For as, there are 2 choices. So total number of such sets is 2[(n—4)+ (n—5)+---+1] =

2w =(n—4)(n—3). 4 marks
But ag = ao + 1 as well as ag = a4 — 1 gets counted twice. So total number of such sets
is(n—4)(n—-3)—(n—4)=(n—4)(n—4) = (n—4)2 2
. Find all positive integers n for which a permutation ay,asg, .. .,a, of {1,2,...,n} can be
found such that 0, a1, a1 +as, a1 +as+as,...,a1+as+...+a, leave distinct remainders
modulo n + 1.
Solution: Let aj,aq,...,a, be a permutation of {1,2,...,n} such that 0,a;,a; +
as,a1 +as +as,...,a1 +as + ...+ a, leave distinct remainders modulo n + 1. If n is
even, then a1 +as+---+a, = n(n;—l) = 0( mod n+1). So remainders modulo n+1
can not be distinct. 3 marks

Let n be odd. Then choose a; = 1,a3 = n — 1,a3 = 3,a4 = n — 3 and so on. Then
ap = 1( modn+1),a1 +a2 =n( modn+1),a; +az+a3 =n+3 =2( modn +
1),a1 +a2+a3+as =2n=n—1( mod n+1),---. This gives required permutation.
3 marks

Part I11

. Do there exist 100 lines in the plane, no three concurrent such that they intersect ex-

actly in 2017 points? [12]
Solution: Consider k sets of parallel lines having respectively my, mo, -, my lines
in each set. Then we need to solve the equations mi 4+ mo + --- + my = 100 and
Zmimj = 2017. 4 marks
1<J )
(Zmz> = Zm? —l—ZZmimj

1<j



Therefore > m? = 10,000 — 2(2017) = 5966. Thus we need to find 100 numbers satis-
fying Y- m; = 100 and > m? = 5966. 3 marks
We can get any one of the following solutions:

(a) 75,18,3,2,2

(b) 77,3,2,2,2,2,1(12 times)

(¢) 77,4,2,1(17 times) 5 marks
. On the parabola y = 22, a sequence of points P, (x,,yn) is selected recursively where
the points P;, P, are arbitrarily selected distinct points. Having selected P,, tangents
drawn at P,_; and P, meet at say Q,. Suppose P, is the point of intersection of
y = 22 and the line passing through @,, parallel to Y-axis. Under what conditions on
Pl) P2

(a) both the sequences {z,} and {y,} converge?

(b) {zn} and {y,} both converge to 07 [13]

Solution:

a) Since y,, = 2, it is enough to discuss the convergence of {z,, }. Tangents at =, Tn_1
n

are given by y = 22 + 2z, (v — z,) = 2vp,7 — 22 and y = 2z, 17 — 22 _|.

Solving we get, x,11 = w Therefore P11 <:cn_12+ wn, (an—l;- a:n)2> .
4 marks

Now all x,, are within the interval [z}, 23] and all are distinct. Hence {x,} con-
verges. 3
marks

(b) We first consider a special case where 1 = 0,z9 = 1. Then the sequence {z,} is
01131+1 1+1+1 1+1+1 Its sub ) 11+1 1+1+
=, =+-,—+=-+—,-+-+-,--- . Itssub sequenceis =, =+, =+ =
77727472 872 8 1672 8 32 q 2’72 82 8

o0
- which are partial sums of the geometric series Z which converges

22n+1
n=0

30

2
and sum is given by 3 Thus in this case x,, convereges to %

Ty — T
Now in general, for any z; < 2, we define z,_; = — L Note that zp = 0 and
Tr9 — 1
. . Zn—1+ 2
z1 = 1 and the sequence z, satisfies the relation z,41 = % Thus by the

special case above, z, converges to % Now observe that the limit of x,, is the real
number z which divides the interval [z1, 23] in the ratio 2 : 1. For z = 0, we need

to take 1 # 0 and xo = —5951. 6 marks

(a) Show that there does not exist a 3-digit number A such that 1034 + A is a perfect

square.

(b) Show that there exists an n-digit (n > 3) number A such that 10" A+ A is a perfect

square. [12]
Solution:

(a) If 1034 + A = A(1001) is a perfect square, then 7|A4,11|A and 13|A. Therefore
A >1001. That is A has bigger than or equal to 4 digits. 3 marks

(b) For some n if 10"A + A = A(10™ 4+ 1) is a perfect square, then 10" 4+ 1 must be
divisible by a square bigger than 1. Because if no perfect square divides 10™ + 1,
then all prime divisors of 10™ + 1 must appear in factorization of A. This makes
A>10"4+1, but A < 10™ + 1. Therefore 10™ 4+ 1 has a square factor. 4 marks



Now observe that 101141 = (11)(10° —1094108 —---—10+1) = (11)(9090909091)

and thus 121 divides 10! + %i 2 marks
1

Thus we can choose A as T;_ x 9 so that 1010 < A < 10" and (10" + 1)A is

a perfect square. 3 marks

4. For n x n matrices A, B, let C = AB — BA. If C commutes with both A and B, then

(a)
(b)

Show that AB* — B¥A = kEB*~1C for every positive integer k.
Show that there exists a positive integer m such that C™ = 0. [13]

Solution:

(a)

The proof is by induction. The result is true for ¥ = 1,2. AB — BA = C and
AB? — B2A = (AB — BA)B + B(AB — BA) = CB + BC = 2BC. 1 marks
Assume that the result is true upto k — 1. AB¥ — B¥A = (AB — BA)B*! +
B(AB*1! — B*1A) = CB*! + B(k — 1)B*2C = kB*'C. 3 marks

Hence for any polynomial ¢(x), Aq(B)—q(B)A = ¢'(B)C, where ¢’ is a derivative
of ¢. In particular, let p(x) be the characteristic polynomial of B. Now by Caley-
Hamilton Theorem,

0= Ap(B) — p(B)A = p/(B)C. This proves p'(B)C = 0. 4 marks
0 = Ap'(B)C—p'(B)AC = (Ap'(B)—p'(B)A)C = p"(B)C?. This proves p"(B)C? =
0. Inductively, we have p¥)(B)C* = 0. Therefore for k = n, we have n!lC™ = 0.
Hence C™ = 0. 5 marks




