
MADHAVA MATHEMATICS COMPETITION, January 6, 2019
Solutions and scheme of marking

N.B.: Part I carries 20 marks, Part II carries 30 marks and Part III carries 50
marks.

Part I
N.B. Each question in Part I carries 2 marks.

1. The values of k for which the line y = kx intersects the parabola y = (x− 1)2 are
A) k ≤ 0 B) k ≥ −4 C) k ≥ 0 or k ≤ −4 D) −4 ≤ k ≤ 0.
Answer: C
Equating kx = (x− 1)2, we get x2 − (k + 2)x+ 1 = 0. The discriminant is
(k + 2)2 − 4 = k(k + 4) ≥ 0 for k ≥ 0 or k ≤ −4.

2. Let M2(Z2) denote the set of all 2× 2 matrices with entries from Z2, where Z2 denotes
the set of integers modulo 2. The function f : M2(Z2)→M2(Z2) given by f(x) = x2 is
A) injective but not surjective B) bijective
C) surjective but not injective D) neither injective nor surjective.
Answer: D

The product

(
1 1
1 1

) (
1 1
1 1

)
=

(
0 0
0 0

)
shows that the map is not injective and hence

not surjective, since the domain and codomain are finite sets having same number of
elements.

3. Consider the sequence 4, 0, 4.1, 0, 4.11, 0, 4.111, 0, · · · . This sequence
A) converges to 41

9 B) has no convergent subsequence
C) is unbounded D) is not convergent and has supremum 41

9 .
Answer: D
a2n = 0 ∀n ∈ N. This is a convergent subsequence.(Option B not true)
a2n+1 is an increasing subsequence of positive real numbers. Also a2n+1 is bounded
above by 5. Hence a2n+1 is convergent and converges to its supremum,

supremum of a2n+1 = 4 +

∞∑
n=1

1

10n
= 4

1

9
.

Note that lim
n→∞

a2n+1 = 4
1

9
6= lim

n→∞
a2n = 0. Thus sequence is bounded (Option C not

true) but it is not convergent (Option A incorrect). Clearly Option D is correct.

4. Consider the function f : R→ R given by f(x) = (x− 2)|(x− 2)(x− 3)|. The function
f is
A) differentiable at x = 2 but not at x = 3 B) differentiable at x = 3 but not at x = 2
C) differentiable at x = 2 and x = 3 D) neither differentiable at x = 2 nor at x = 3.
Answer: A
Using definition we get

lim
x→2+

f(x)− f(2)

x− 2
= lim

x→2−

f(x)− f(2)

x− 2
and lim

x→3+

f(x)− f(3)

x− 3
6= lim

x→3−

f(x)− f(3)

x− 3
.

Thus the given function is differentiable at 2 but not differentiable at 3

5. The equation z2 + z̄2 = 2 represents the
A) parabola B) pair of lines C) hyperbola D) ellipse.
Answer: C
The given equation reduces to x2 − y2 = 1, which represents a hyperbola.

6. The differential equation of the family of parabolas having their vertices at the origin
and their foci on the X-axis is
A) 2xdy − ydx = 0 B) xdy + ydx = 0 C) 2ydx− xdy = 0 D) dy − xdx = 0.
Answer: A
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Let y2 = ax. Differentiating both sides we get, 2y dydx = a. Substituting value of a, we
get 2xdy − ydx = 0.

7. The number of solutions of the equation
√

1− sinx = cosx in [0, 5π] is equal to
A) 3 B) 6 C) 8 D) 11.
Answer: B
Squaring both sides we get 1− sinx = 1 − sin2 x and thus sinx = 0 or sinx = 1. In
[0, 5π], we then have x = 0, π, 2π, 3π, 4π, π/2, 5π/2, 7π/2. We need to reject the values
π, 3π, 5π as in these cases LHS = 1 and RHS = -1. Hence number of solutions is 6.

8. Consider 4ABC. Take 3 points on AB, 4 on BC and 5 on CA such that none of the
points are vertices of 4ABC. The number of triangles that can be constructed using
these points is
A) 60 B) 205 C) 145 D) 120.
Answer: B
The triangles can be formed in the following ways
1) By choosing one point each on AB, BC, CA. The number of such triangles is 60.
2a) By choosing one point on AB and two on either BC or CA.

This can be done in 3

[(
4

2

)
+

(
5

2

)]
.

2b) By choosing one point on BC and two on either AB or CA.

This can be done in 4

[(
3

2

)
+

(
5

2

)]
.

2c) By choosing one point on AC and two on either AB or BC.

This can be done in 5

[(
3

2

)
+

(
4

2

)]
.

Hence the total number of triangles that can be constructed using these points is 205.

9. The number of primes p such that p, p+ 10, p+ 14 are all prime numbers is
A) 0 B) 1 C) 3 D) infinitely many.
Answer: B
If p = 3, we note that 3,13,17 are all prime. Thus p = 3 is a solution. Any other
prime is either of the type 3k + 1 or 3k + 2. If p = 3k + 1 for some integer k ≥ 0,
then p + 14 = 3(k + 5) is not a prime. If p = 3k + 2 for some integer k ≥ 0, then
p+ 10 = 3(k + 4) is not a prime. Thus p = 3 is the only solution.

10. A relation R is defined on the set of positive integers as xRy if 2x+ y ≤ 5. The relation
R is
A) reflexive B) symmetric C) transitive D) None of these.
Answer: D
(2, 2) 6∈ R, so relation R is not reflexive.
Since (1, 3) ∈ R but (3, 1) 6∈ R, so relation R is not symmetric.
Since (2, 1) ∈ R and (1, 3) ∈ R but (2, 3) 6∈ R, so relation R is not transitive.

Part II
N.B. Each question in Part II carries 6 marks.

1. Find all polynomials p(x) such that (p(x))2 = 1 + xp(x+ 1) for all real numbers x.
Solution: Suppose p(x) is a polynomial of degree n and it satisfies
(p(x))2 = 1 + xp(x + 1) for all real numbers x. Now, the degree of (p(x))2 is 2n and
the degree of 1 + xp(x + 1) is n + 1. Comparing left and right hand side of the given
equation, we get 2n = n+ 1. Therefore n = 1. Hence p(x) is a linear polynomial. [3]
Let p(x) = ax+ b, where a 6= 0. Substituting in the given equation, we get
(ax+ b)2 = 1 + x(a(x+ 1) + b). Simplifying this we get a quadratic equation,
(a2 − a)x2 + (2ab − a − b)x + (b2 − 1) = 0. This is true for all real numbers x. Hence
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a2 − a = 0, 2ab − a − b = 0, b2 − 1 = 0. This implies that a = 1, b = 1. Therefore
p(x) = x+ 1. [3]

2. A transposition of a vector X of length n is created by switching exactly two distinct
entries of a vector X. For example, (1, 3, 2, 4) is a transposition of the vector (1, 2, 3, 4)
of length 4. Find a vector X if it is given that all the vectors below are transpositions
of X: S = (0, 1, 1, 1, 0, 0, 0, 1), T = (1, 0, 1, 1, 1, 0, 0, 0), U = (1, 0, 1, 0, 1, 0, 0, 1),
V = (1, 1, 1, 1, 0, 0, 0, 0),W = (1, 0, 0, 1, 0, 0, 1, 1).
Solution: Let X = (x1, x2, x3, x4, x5, x6, x7, x8). The first observation is that X should
have exactly 4 ones and 4 zeroes as all of S, T, U, V,W are of the same type. Then,
the dot product of X with itself will count the number of ones occuring in the vector
X. Hence,

∑8
i=1 x

2
i = 4. Also, if we let Y denote the vector consisting of all ones,

then X · Y =
∑8

i=1 xi counts the number of ones present in the vector X and hence,
X ·Y = 4 =

∑8
i=1 xi. Now note that any permutation of X exchanges one zero and one

one. Hence, the dot product of X with any of its transpositions has one less one i.e.,
X · S = X · T = X · U = X · V = X ·W = 3. This gives rise to the following system of
equations:

x2 + x3 + x4 + x8 = 3,

x1 + x3 + x4 + x5 = 3,

x1 + x3 + x5 + x8 = 3,

x1 + x2 + x3 + x4 = 3,

x1 + x4 + x7 + x8 = 3.

[3]
Solving the above system, it is easy to check that we get x1 = x4 = x8 and x2 = x5.
These equations together with x1+x4+x7+x8 = 3 give that x7 = 0 and x1 = x4 = x8 =
1. Since 4 =

∑8
i=1 xi, we get x2 + x3 + x5 + x6 + x7 = 1. Now if both x2 = x5 are one,

substituting in the above equation will give a contradiction. Hence, x2 = x5 = 0. From
this it is easy to deduce that x6 = x7 = 0, x3 = 1. Thus, we get X = (1, 0, 1, 1, 0, 0, 0, 1).

[3]

3. In the complex plane, let u, v be two distinct solutions of z2019 − 1 = 0. Find the prob-
ability that |u+ v| ≥ 1.
Solution: Let u, v be two distinct solutions of zn − 1 = 0. Then we can write
u = ei2πk/n, v = ei2πm/n,m 6= k.

Observe that |u+ v| = |u||1 +
v

u
| = |1 + ei2π(m−k)/n|

= |1 + cos(2π(m− k)/n) + i sin(2π(m− k)/n)| =
√

2 + 2 cos(2π(m− k)/n)

Now |u+ v| ≥ 1 if and only if
−1

2
≤ cos

2π(m− k)

n
. [3]

This is true if and only if
−2π

3
≤ 2π(m− k)

n
≤ 2π

3
.

This is true if and only if
−1

3
≤ m− k

n
≤ 1

3
.

For n = 2019, there are 2 × 673 possibilities of m for each k. Hence the required

probability is
2× 673× 2019

2019× 2018
=

2× 673

2018
. [3]

4. Let f : [a, b] → [a, b] be a continuous function which is differentiable on (a, b) and
f(a) = a, f(b) = b. Prove that there exist two distinct points x1 and x2 in (a, b) such
that f ′(x1)f

′(x2) = 1.
Solution: Let g = f ◦f. Then g(a) = a, g(b) = b. By Lagrange’s Mean Value Theorem,
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there exists c ∈ (a, b) such that
g(b)− g(a)

b− a
= 1 = g′(c).

This implies that f ′(f(c))f ′(c) = 1. [3]
Case 1: If f(c) 6= c, then choose x1 = c and x2 = f(c). [1]
Case 2: Let f(c) = c. Applying Lagrange’s Mean Value Theorem to f on intervals [a, c]
and [c, b], we get x1 ∈ (a, c) and x2 ∈ (c, b) such that

f(c)− f(a)

c− a
= 1 = f ′(x1),

f(b)− f(c)

b− c
= 1 = f ′(x2).

Hence f ′(x1)f
′(x2) = 1. [2]

5. Prove that there do not exist functions f, g : R → R such that f(g(x)) = x2018 and
g(f(x)) = x2019.
Solution: Suppose there exist functions f, g : R → R such that f(g(x)) = x2018

and g(f(x)) = x2019. Therefore (f ◦ g)(f(x)) = (f(x))2018. Since the composition is
associative, we have f ◦ (g ◦ f)(x) = (f(x))2018. This implies that

f(x2019) = (f(x))2018.

[3]
Since 2019 is an odd number, g ◦f is an injective function. Therefore f is also injective.
Substituting x = 0, 1,−1 in the above equation, we get

(f(0))2018 = f(0), (f(1))2018 = f(1), (f(−1))2018 = f(−1).

But, only real solutions of x2018 = x are 0 and 1. This implies that at least two of
f(0), f(1), f(−1) are same which contradicts the injectivity of the function f. Hence
there do not exist functions f, g : R→ R such that f(g(x)) = x2018 and g(f(x)) = x2019.

[3]

Part III

1. Let f(x) = a0x
n+ · · ·+an be a non-constant polynomial with real coefficients satisfying

f(x)f(2x2) = f(2x3 + x)

for all real numbers x.

(a) Show that an 6= 0.

(b) Show that f has no real root.

(c) Find a polynomial f satisfying f(x)f(2x2) = f(2x3 + x) for all real numbers x.

[13]

Solution:

(a) Let k be the greatest index such that ak 6= 0. Then the left hand side has a form
f(x)f(2x2) = a202

nx3n + · · ·+ a2k2
n−kx3(n−k) and the right hand side has a form

f(2x3 + x) = a02
nx3n + · · ·+ akx

n−k. So we must have

a2k2
n−kx3(n−k) = akx

n−k, ∀x ∈ R,

which gives n = k, that is an = ak 6= 0. [4]

(b) Suppose x0 6= 0 is a root of f(x). Consider a sequence

xn+1 = 2x3n + xn, n ≥ 0.

Note that if x0 > 0, then {xn} is increasing and if x0 < 0, then {xn} is decreasing.
From the assumption of the problem, it follows that if f(x0) = 0 with x0 6= 0,
then f(xk) = 0,∀k. This shows that a non-constant polynomial of degree n has
infinitely many roots, which is impossible. Thus f has no real root. [6]
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(c) f(x) = x2 + 1 [3]

2. For a subset X = {x1, x2, · · · , xn} of the set of positive integers, X+X denotes the set
{xi + xj : i 6= j} and |X| denotes the number of elements in X.

(a) Find subsets A,B of positive integers such that |A| = |B| = 4, A 6= B and
A+A = B +B.

(b) Do there exist subsets A,B of positive integers such that |A| = |B| = 3, A 6= B
and A+A = B +B?

(c) Show that if n = 2k, then there exist subsets A,B of positive integers such that
|A| = |B| = n,A 6= B and A+A = B +B. [13]

Solution:

(a) A = {1, 4, 6, 7}, B = {2, 3, 5, 8}. [3]

(b) Let A = {a, b, c} and B = {d, e, f}. Suppose a < b < c and d < e < f. Suppose
A+A = B +B. Now by the given condition, we have

a+ b = d+ e, b+ c = e+ f, a+ c = d+ f.

Adding all these we get, a + b + c = d + e + f. This implies a = d, b = e, c = f.
This is contradiction. [4]

(c) Note that if sets A = {a1, · · · , an} and B = {b1, . . . , bn} have property that |A| =
|B| = n,A 6= B and A+A = B+B, then for a suitable positive integert m, the sets
A′ = {a1, . . . , an, b1+m, · · · , bn+m } and B′ = {a1+m, . . . , an+m, b1, . . . , bn } will
have property that |A′| = |B′| = 2n,A′ 6= B′ and A′+A′ = B′+B′. Now starting
with A = {1, 4} and B = {2, 3}, for any positive integert k, we can inductively
find the sets of sizes 2k with desired property. [6]

3. On the real line place an object at 1. After every flip of a fair coin, move the object to
the right by 1 unit if the outcome is Head and to the left by 1 unit if the outcome is
Tail. Let N be a fixed positive integer. Game ends when the object reaches either 0 or
N. Let P (N) denote the probability of the object reaching N.

(a) Find P (3).

(b) Find the formula for P (N) for any positive integer N. [12]

Solution:

(a) Starting the game at 1, the possible outcomes to reach 3 without reaching zero are
HH, HTHH, HTHTHH and so on. Hence the probability of reaching 3 without

going to zero is given by a geometric series
1

22
+

1

24
+

1

26
+ · · · which adds up to

1

3
. Hence P (3) =

1

3
. [6]

(b) For any positive integer N, P (N) = P (N − 1)[P (N − 1→ N)] where
[P (N − 1 → N)] denotes probabilty of reaching N from N − 1 without reachin
zero. Now by symmetry, [P (N − 1→ N)] is equal to [P (1→ 0)] without reaching
N. But [P (1 → 0)] is equal to 1 − P (N). Thus we have a recurrence relation
P (N) = P (N − 1)(1 − P (N)). Now with P (1) = 1, P (2) = 1

2 , P (3) = 1
3 , the

recurrence relation obtained above allows us to prove that P (N) =
1

N
. [6]

4. Let f be a real valued differentiable function on (0,∞) satisfying

(a) |f(x)| ≤ 5 and
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(b) f(x)f ′(x) ≥ sinx for all x ∈ (0,∞).

Does lim
x→∞

f(x) exist? [12]

Solution: Consider F (x) = f2(x) + 2 cosx defined on (0,∞). Then by (a),

|F (x)| ≤ |f(x)|2 + 2| cosx| ≤ 52 + 2.

By (b), F ′(x) = 2f(x)f ′(x) − 2 sinx ≥ 0, ∀x ∈ (0,∞) implying that F (x) is an
increasing function. [6]
Let {xn} := {2π, 2π + π

2 , 4π, 4π + π
2 , 6π, 6π + π

2 , · · · }. Observe that ∀n, xn > 0, {xn} is
an increasing sequence and xn →∞ as n→∞.
Put un = F (xn). Now observe that {un} is an increasing sequence which is bounded
above. Thus {un} is convergent. Assume that lim

x→∞
f(x) exists. This implies that if

vn = f(xn), then lim
n→∞

vn exists. Therefore lim
n→∞

[F (xn)− f2(xn)] exists. Now

lim
n→∞

[F (xn)− f2(xn)] = lim
n→∞

un − lim
x→∞

v2n.

This implies that lim
n→∞

cosxn exists. This is not possible because the sequence

{cosxn} = {1, 0, 1, 0, · · · } has no limit. [6]
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