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Part I
N.B. Each question in Part I carries 2 marks.

1. Find constants a, b such that lim
x→0

√
ax+ b− 2

x
= 1.

(A) a = −4, b = −4 (B) a = 4, b = 4 (C) a = −3, b = 4 (D) a = 4, b = −2.
Ans: (B)

2. The value of n for which i+ 2(i)2 + 3(i)3 + 4(i)4 + · · ·+ n(i)n equals −16 + 15i is
(A) 20 (B) 25 (C) 30 (D) 15.
Ans: (C)

3. Find the value of a real number b for which the sum of the squares of the zeros of
x2 − (b− 2)x− b− 1 is minimal.
(A) 2 (B) 3 (C) −5 (D) 1.
Ans: (D)

4. Let S be the set of all last two digits of the powers of 3. (For example, 03, 09, 27, 81, 43 ∈
S) Then, the number of distinct elements of S is
(A) 20 (B) 25 (C) 30 (D) 40.
Ans: (A)

5. The sum of the roots of x2 − 31x+ 220 = 2x(31− 2x− 2x) is
(A) 10 (B) 7 (C) 3 (D) 4.
Ans: (B)

6. The number of regions in which the plane gets divided by curves (sin t, sin 2t) and
(cos t, cos 2t) for t ∈ R is
(A) 5 (B) 7 (C) 6 (D) 4.
Ans: (C)

7. In how many ways 6 persons can exchange seats among them in a row such that no one
occupies his seat in a original position and exactly two of them have mutual exchange?
(A)

(
6
2

)
× 6 (B)

(
6
2

)
× 4! (C)

(
6
2

)
× 3 (D)

(
6
2

)
× 4.

Ans: (A)

8. Let A = {x ∈ (0, 3) | [x]2 = [x2]}, where [x] denotes the greatest integer less than or
equal to x. Let M = supA. Then
(A) M ∈ A,M /∈ (0, 3) (B) M /∈ A,M /∈ (0, 3)
(C) M ∈ A,M ∈ (0, 3) (D) M /∈ A,M ∈ (0, 3).
Ans: (D)

9. If 4047 = x +
x

1 + 2
+

x

1 + 2 + 3
+

x

1 + 2 + 3 + 4
+ · · · + x

1 + 2 + 3 + · · ·+ 4047
, then

x =

1



(A) 2000 (B) 2024 (C) 2002 (D) 2004.
Ans: (B)

10. Let A(0, 0), B(0, 23), C(23, 0) be the points in the plane. The number of points with
integral coordinates that lie inside the triangle ABC (not on the boundary) is
(A) 253 (B) 242 (C) 231 (D) 219.
Ans: (C)

Part II
N.B. Each question in Part II carries 6 marks.

1. Following operations are permitted with a quadratic ax2 + bx+ c

(i) Switch a and c

(ii) Replace x by x+ t for t ∈ R.

Can you convert x2 − x− 2 into x2 − x− 1 with repeated operations (i) and (ii)?
Solution: Let f(x) = ax2 + bx + c and let g(x) be the polynomial obtained after
performing both the above operations (i) and (ii) for some t ∈ R. Then, g(x) =
cx2 + (2tc+ b)x+ ct2 + bt+ a.
We observe that the discriminant of f(x) and g(x) is same. That is, the discriminant
is invariant under the operations (i), (ii). [4]
Now, the discriminant of x2 − x− 2 is 9 whereas that of x2 − x− 1 is 5. Thus, it is not
possible to convert x2 − x− 2 into x2 − x− 1 with repeated operations (i) and (ii). [2]

2. Consider a right angled triangle PRQ with coordinates of the vertices integers. If slope
and length of the hypotenuse PQ are integers, then show that PQ is parallel to the
X-axis.
Solution: Let P (m1, n1) and Q(m2, n2) be vertices with integer coordinates. The slope

λ =
n2 − n1

m2 −m1
is also integer. Suppose the length of the hypotenuse PQ is m which is

also integer. Then m2 = (m2 − m1)
2 + (n2 − n1)

2 = (m2 − m1)
2 + λ2(m2 − m1)

2 =
(1 + λ2)(m2 −m1)

2. [4]
Thus (1 + λ2) is a square implying that λ = 0. Therefore n1 = n2. Thus PQ is parallel
to the X-axis. [2]

3. Let 1 ≤ a1 < a2 < · · · < aℓ ≤ n be integers with ℓ >
n+ 1

2
. Show that there exist i, j, k

with 1 ≤ i < j < k ≤ ℓ such that ai + aj = ak.

The statement above is not true if n is an even integer.
For example, if n = 4, choose l = 3 and consider the set {2, 3, 4}. Then the property
claimed in the problem does not hold. In general, if n = 2k, choose l = ⌊2k+1

2 ⌋+ 1 and
then the choice of elements {n− l + 1, n− l + 2 · · · , n− 1, n} gives a contradiction.
The statement of the problem is correct if n is an odd integer:
For an odd integer n = 2k + 1, let ℓ ≥ n+1

2 + 1.
Let A = {a2, · · · , aℓ} and B = {a2 − a1, a3 − a1, · · · , aℓ − a1}.
Then A and B are subsets of first n natural numbers with |A| + |B| = 2ℓ − 2 ≥ n + 1
Therefore A ∩ B is non-empty. Hence there exist ai, aj such that i ≥ 2 and i ̸= j such
that ai = aj − a1.

Note :
1. As there is an error in the problem, please give 6 marks to all the students.
2. As per every year, top few papers will be centrally moderated. We shall re-assess
the solutions of this problem at the time of moderation, and due credit to the correct
answers/partial answers/counterexamples will be given at that time.
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4. The sequence (an) is defined by

a1 = 0, |an| = |an−1 + 1| for each n ≥ 2.

For every positive integer n, prove that,
a1 + a2 + · · ·+ an

n
≥ −1

2
.

When does the equality hold?

Solution 1: For each n, the number
a1 + a2 + · · ·+ an

n
is minimum if an is chosen to

be a non-positive value of (an−1 + 1). [4]

Thus
a1 + a2 + · · ·+ an

n
is minimized if a1 = 0, a2 = −1, a3 = 0, a4 = −1, · · · [2]

Solution 2: Squaring each term, we get a21 = 0, a22 = (a1 + 1)2, a23 = (a2 + 1)2, · · · ,
a2n+1 = (an + 1)2. Adding all these terms, we get
a21 + a22 + a23 + · · ·+ a2n+1 = (a1 + 1)2 + (a2 + 1)2 + · · ·+ (an + 1)2

= a21 + a22 + · · ·+ a2n + 2(a1 + a2 + · · ·+ an) + n.
This implies that a2n+1 = 2(a1 + a2 + · · ·+ an) + n ≥ 0.

Hence
a1 + a2 + · · ·+ an

n
≥ −1

2
. [4]

Equality holds if and only if n is even and the sequence is {0,−1, 0,−1. · · · } [2]

5. Let f : R → R be defined as f(x) = x(x− 1)(2− x).

Let S = {x ∈ R : f(x+ t) > f(x) for some t > 0}.

(a) Draw the graph of f .

(b) Is the set S non-empty? Justify.

(c) Is the set S bounded? Find supS, if it exists.

Solution:

(a) Observe: f is a polynomial of degree 3. Further, f(x) > 0 if x < 0 or 1 < x < 2
and f(x) < 0 if 0 < x < 1 or x > 2.

Hence, the graph of f is:

[1]

(b) S ̸= ∅. Since, f(1.1) = 1.1× 0.1× 0.9 > 0 = f(1) , hence, 1 ∈ S. [1]

(c) f(x) = −x3 + 3x2 − 2x. Thus, f ′(x) = −3x2 + 6x− 2 = −3(x− 1)2 + 1
For x ≥ 2, f ′(x) ≤ −2 < 0 and hence, f is decreasing on [2,∞). Thus, x /∈ S,
∀x ≥ 2.
Hence, S is bounded above by 2.

f ′(x) = 0 =⇒ x = 1± 1√
3
. Let x1 = 1− 1√

3
and x2 = 1 +

1√
3
.

f ′′(x) = −6x + 6. f ′′(x1) > 0 and f ′′(x2) < 0, thus by Second derivative test, f
has local minimum at x1 and local maximum at x2.
It can be seen that f is strictly decreasing on (−∞, x1) and on (x2,∞) and f is
strictly increasing on (x1, x2). Now, for any x ≤ 0, we get, f ′(x) < −2.
Let n ∈ Z be such that n < n+ 1 ≤ 0. Then, by Lagrange’s mean value theorem,
there exist c ∈ (n, n+ 1) such that f(n+ 1)− f(n) = f ′(c) < −2, as c < 0.
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Hence, we get, f(n) > f(n+ 1) + 2, for all n < n+ 1 ≤ 0.
Thus, as n → −∞, f(n) → ∞.
=⇒ there exist n0 ∈ Z with n0 < 0 such that f(x) > f(x2) for all x ≤ n0.
Hence, ∀x < n0, we must have x /∈ S. Thus, S is bounded below by n0 and hence,
S is a bounded set.
Claim: supS = x2.
It is clear that x2 is an upper bound of S.
Let ε > 0 be an arbitrary positive real number. Since, f has local maximum at x2,

we have δ > 0 such that f(x) ≤ f(x2), for all x ∈ (x2−δ, x2+δ). Take x = x2−
δ1
2

where δ1 = min{δ, ε, x2−x1}. Then, as x1 < x < x2 and f is strictly increasing on
(x1, x2), we get, f(x) < f(x2) and hence, we get, x ∈ S such that x2− ε < x ≤ x2.
Thus, by characterization of supremum, supS = x2. [4]

Part III

1. Let Z10 denote the set of integers modulo 10.

(a) i. Find a nonzero solution to the following system of equations in Z10 : [2]

4x+ 6y = 0

2x+ 4y = 0

ii. Find a nonzero solution to the following system of equations in Z10 : [2]

4x+ 3y = 0

x+ 2y = 0

(b) Prove that the system of equations

ax+ by = 0

cx+ dy = 0

has a unique solution x = 0, y = 0 in Z10 if and only if the number
(ad− bc) (mod 10) ∈ {1, 3, 7, 9}. [8]

Solution:

(a) i. x = 5, y = 0 or any other correct solution [2]

ii. x = 4, y = 8 or any other correct solution [2]

(b) Consider the following system of equations where a, b, c, d are integers modulo 10.

ax+ by = 0

cx+ dy = 0
(1)

Observe that x = 0, y = 0 is a solution of Eq. (1) for all possible values of a, b, c, d.

Claim: The system (1) has a unique solution x = 0, y = 0 if and only if ad − bc
is a unit modulo 10. (Note that the units modulo 10 are 1, 3, 7, 9.)Suppose

ad − bc ∈ {1, 3, 7, 9} By multiplying the first equation by d and the second by
b and then subtracting the one from the other, we get (ad− bc)x = 0. As ad− bc
is a unit, we then get x = 0. Similarly, we have y = 0. [2]

For the other implication, we have to make cases. Suppose ad − bc is not a unit
modulo 10.
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We show that Eq. (1) has a solution

(
x0
y0

)
̸=

(
0
0

)
, i.e., there exists a nontrivial

solution.

As ad − bc is not a unit modulo 10, there exists m ̸= 0 such that m(ad − bc) =
0 modulo 10. In fact m can be chosen to be 1, 2 or 5.

First observe that

(
x
y

)
=

(
mb
−ma

)
and

(
x
y

)
=

(
md
−mc

)
are solutions of Eq. (1).

If at least one of the four terms −ma,mb,−mc,md is nonzero modulo 10, we are
done! We have to handle the case where −ma = mb = −mc = md = 0 modulo 10.

If m = 1, i.e. if ad− bc = 0 modulo 10, then in the above case, a = b = c = d = 0

and thus

(
x
y

)
=

(
1
0

)
is a nontrivial solution of Eq. (1) and we are done.

So we consider the case ad− bc ̸= 0 modulo 10.

If m = 2. then in this case, each of a, b, c, d ∈ {0, 5} (mod 10). Thus x = 2, y = 0
is a nontrivial solution.

If m = 5, then in this case, each of a, b, c, d ∈ {0, 2, 4, 6, 8} (mod 10). Thus x =
5, y = 0 is a nontrivial solution. [6]

2. Let f(x) = a0 + a1x+ a2x
2 + a10x

10 + a11x
11 + a12x

12 + a13x
13 and

g(x) = b0 + b1x + b2x
2 + b3x

3 + b11x
11 + b12x

12 + b13x
13 be polynomials with real

coefficients such that a13 ̸= 0, b3 ̸= 0. Prove that the degree of gcd(f, g) ≤ 6. [12]
Solution: Define f1(x) = a0 + a1x + a2x

2, f2(x) = a10 + a11x + a12x
2 + a13x

3 and
g1(x) = b0 + b1x + b2x

2 + b3x
3, g2(x) = b11x + b12x

2 + b13x
3. As a13 ̸= 0 and b3 ̸= 0,

we have degree(f2(x)) = 3 and degree(g1(x)) = 3, so that degree(f2(x)g1(x)) = 6. Now
note that

f(x) = f1(x) + x10f2(x),

g(x) = g1(x) + x10g2(x).

[6]
Observe that f(x)g2(x)− g(x)f2(x) = f1(x)g2(x)− g1(x)f2(x). · · · [I]
Note that the degree of the polynomial on RHS of [I] is equal to 6. If h = gcd(f, g),
then h divides the polynomial on LHS of [I]. Therefore h divides the polynomial on
RHS of [I]. Thus degree of gcd(f, g) ≤ 6. [6]

3. (a) Let x0 be an arbitrary real number. Define sequence (xn) as follows:

xn =
xn−1 + 4

5
, ∀n ≥ 1.

Show that sequence (xn) is convergent. Find lim
n→∞

xn. [6]

(b) Let n be a fixed positive integer. Let f : R → R be a non-zero function satisfying
following conditions:

i nth derivative of f is continuous.

ii f(5x+ 3) = 5nf(x+ 7
5), ∀x ∈ R.

Show that f is a polynomial of degree n. [7]

Solution:

(a) Let xn =
xn−1 + 4

5
. Observe that

xn+1 − xn =
xn − xn−1

5
=

xn−1 − xn−2

52
=

x1 − x0
5n

.
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This implies that the sequence (xn) is Cauchy sequence of real numbers and hence
convergent. Suppose the sequence (xn) converges to c. Then by the given recur-

rence relation, we have c =
c+ 4

5
. Therefore c = 1. [6]

(b) Differentiating f(5x+ 3) = 5nf(x+ 7
5) n times, we get that

5nf (n)(5x+ 3) = 5nf (n)(x+ 7
5). Therefore f (n)(5x+ 3) = f (n)(x+ 7

5).
Put y = 5x+ 3, then x = (y − 3)/5. Therefore for all y,

f (n)(y) = f (n)

(
y − 3

5
+

7

5

)
= f (n)

(
y + 4

5

)
.

Put y = x0. Now by using the sequence in part (a), we have

f (n)(x0) = f (n)

(
x0 + 4

5

)
= f (n)(x1). Continuing in this way, we get that f (n)(xm)

is a constant sequence. Since the sequence (xm) converges to 1, by continuity of
f (n) we have f (n)(xm) converges to f (n)(1). Thus f (n)(xm) = f (n)(1), ∀m. Since x0
is an arbitrary real number, f (n)(x) is a constant function. Hence f is a polynomial
of degree at most n. However by comparing the coefficient of highest degree term
in the equation f(5x+ 3) = 5nf(x+ 7

5) , we get that f must be a polynomial of
degree n.

[7]

4. Let n be a positive integer bigger than 1. Let ρ(n) be the smallest possible rank of an
n× n matrix that has zeros along the main diagonal and strictly positive real numbers
off the main diagonal.

(a) Find ρ(2) and ρ(3). [4]

(b) Find ρ(4). [5]

(c) Find ρ(n) for each n. [4]

Solution:

(a) For n = 2, the determinant of such a matrix is negative. Therefore ρ(2) = 2. [1]
Let n = 3.
Claim: All three rows R1, R2, R3 are linearly independent.
Suppose c1R1 + c2R2 + c3R3 = 0. In the first column, first entry is zero and all
other entries are positive. Therefore, we get that either c2, c3 have opposite signs
or both are zero. The same argument applies to the pairs c1, c2 and c1, c3. Hence
they all must be zero. Hence ρ(3) = 3. [3]

(b) Let n = 4.
By similar argument as in the case of n = 3, the first three rows are linearly
independent.
Consider a 4 × 4 matrix A = ((i − j)2)4i,j=1. Note that rank of A is 3. Hence
ρ(4) = 3. (Any other correct example). [5]

(c) We show that for all n ≥ 3, ρ(n) = 3.
By similar argument as in the case of n = 3, the first three rows are linearly
independent.
We now present an example of a matrix of rank at most 3.
Consider an n× n matirx A = ((i− j)2)ni,j=1.

Note that A =


12

22

...
n2

 (1, 1, · · · , 1) − 2


1
2
...
n

 (1, 2, · · · , n) +


1
1
...
1

 (12, 22, · · · , n2).

Since A is the sum of three matrices of rank 1, the rank of A is at most 3. [4]
(Any other correct example).
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