
Part I

N.B. Each question in part I carries 2 marks.

1. The number of subsets of the set {1, 2, · · · , 10} containing at least one

odd integer is

(a) 210 (b) 25 (c) 10C5 (d) 210 − 25.

Solution : (d)

Total number of subsets of the set {1, 2, · · · , 10} is 210. The number

of subsets of the set {1, 2, · · · , 10} containing only even integers is 25.

Thus the required number is 210 − 25.

2. 12 − 22 + 32 − 42 + ...+ (2009)2 − (2010)2 is equal to

(a) zero

(b) −2021055

(c) −2019045

(d) −1010555.

Solution : (b)

12 − 22 + 32 − 42 + ...+ (2009)2 − (2010)2

= (12 − 22) + (32 − 42) + ...+ ((2009)2 − (2010)2)

= (1− 2)(1 + 2) + (3− 4)(3 + 4) + ...+ (2009− 2010)(2009 + 2010)

= (−1)(1 + 2 + 3 + 4 + ...+ 2009 + 2010)

= −(2010)(2011)

2
= −2021055.

3. The coefficient of (x − 1)3 in the Taylor expansion of (x − 1)3 cos(πx)

about x = 1 is

(a) −1 (b) 1 (c) 6 (d) −6.

Solution : (a)

The coefficient of (x − 1)3 in the Taylor expansion of (x − 1)3 cos(πx)

about x = 1 is nothing but the constant term in the Taylor expansion

of cos(πx) about x = 1. This constant term is cosπ = −1.

4. The number of non-zero solutions of z2 + 2z = 0 is

(a) 2 (b) 3 (c) 4 (d) 5.

Solution : (b)

We have |z2| = | − 2z| = 2|z|. Suppose z 6= 0. Then |z|2 = 4 = zz.

Hence the equation becomes z2 + 2
4

z
= 0 i.e. z3 + 8 = 0. Hence there

are 3 non zero solutions.
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5. Let f : R→ R be a function given by

f(x) =

x2 if x ∈ Q

5x− 6 if x /∈ Q.

Then f is continuous at

(a) no real number (b) −2 and −3 (c) all rationals (d) 2 and 3.

Solution : (d)

Let a be any real number. Suppose f is continuous at a. Let {an} and

{bn} be sequences of rationals and irrationals respectively converging

to a. Then by continuity of f at a,

lim f(an) = lim f(bn)

lim(a2
n) = lim(5bn−6). Therefore a2 = 5a−6. Hence a = 2, 3. Further

it is clear that f is continuous at 2, 3.

6. The number of negative solutions of the equation ex − sinx = 0 is

(a) 1 (b) 2 (c) 0 (d) infinite.

Solution : (d)

Graphs of ex and sin x intersect infinitely many times for negative real

numbers.

7. Let an =
(
2 +
√

3
)n

+
(
2−
√

3
)n

and bn =
(
2 +
√

3
)n − (2−√3

)n
,

and let Tn denote the area of the triangle with sides an − 1, an, an + 1.

Then

(a) an, bn, Tn are all integers for each n ∈ N.
(b) an, Tn are all integers for each n ∈ N.
(c) Tn is not an integer for each n ∈ N.
(d) an is an integer for even n and bn is an integer for odd n.

Solution : (b)

Here we arrive at the answer by the process of elimination ! For n = 1,

a1 = 4, b1 = 2
√

3 and T1 = 6. Therefore (a),(c) and (d) are ruled out.

8. Let A = (aij) be an m× n matrix where

aij =

0 if i+ j is even

1 if i+ j is odd.

Then the rank of A = (aij) is

(a) m (b) n (c) 2 (d) 3.

Solution : (c)

Observe that alternate rows are identical.

9. The last two digits of 17400 are

(a) 17 (b) 09 (c) 01 (d) 89.
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Solution : (c)

By Euler’s theorem 1740 ≡ 1(mod100). Therefore 17400 ≡ 1(mod100).

10. The number of values of a for which the equation x3− x+ a = 0 has a

double root is

(a) 0 (b) 1 (c) 2 (d) infinite.

Solution : (c)

Observe that the equation f(x) = 0 has a double root if and only if it

is a common root of f(x) = 0 and f ′(x) = 0. Now f ′(x) = 3x2 − 1 = 0

at x = ± 1√
3

. For these values of x, we have two different values of a.

Part II

N.B. Each question in part II carries 5 marks.

1. Find the remainder when f(x3) is divided by f(x) where

f(x) = 1 + x+ x2.

Solution : Let f(x) = 1+x+x2. Then (x−1)f(x) = x3−1. Therefore

f(x)|(x3 − 1).

Now f(x3) = 1 + x3 + x6 = 3− 2 + x3 + x6 = (x3 − 1) + (x6 − 1) + 3.

Therefore f(x)|[f(x3) − 3]. Hence the required remainder is 3, since

f being a polynomial of degree 2, the unique remainder is of the form

ax+ b.

2. Let f : [0, 1]→ [0, 1] be a function defined as follows:

f(1) = 1, and if a = 0.a1a2a3.... is the decimal representation of a

(which does not end with a chain of 9’s), then f(a) = 0.0a10a20a3.....

Discuss the continuity of f at 0.392.

Solution : Let a = 0.392. Thus f(a) = 0.030902. We shall prove that

the given function is not continuous at a. We construct a sequence

xn converging to a such that f(xn) does not converge to f(a). Let

xn = 0.39199 . . . 9, where 9 occurs n times at the end. Then xn → a.

Now f(xn) = 0.03090109090 . . . 09, where 09 occurs n times at the end.

Observe that f(xn) does not converge to f(a) = 0.030902.

3. A bubble chamber contains 3 types of particles. 100 of type x, 200 of

type y and 300 of type z. Whenever x and y particles collide they both

become z particles, likewise when y and z collide they both become x,

and when x and z collide they both become y.

Can the particles in the chamber evolve so that there remain particles

of only one type?

Solution : Suppose r, s, t are the number of x, y and z particles in the

beginning. When x and y collide we get (r− 1, s− 1, t+ 2) as the new

numbers say (r′, s′, t′). We notice that

t− r ≡ t′ − r′ (mod 3).
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Same is true about r − s and s− t.
Now in the beginning r = 100, s = 200, t = 300 Hence r − s ≡ 2

(mod 3).

s− t ≡ 2(mod 3).

t− r ≡ 2(mod 3).

Thus at any stage r 6≡ s(mod 3),s 6≡ t(mod 3),t 6≡ r (mod 3). But if

the particles end up in only one type, then two of r, s, t become zero,

say r = s = 0. Then certainly r ≡ s(mod3). This is not possible.Hence

it is impossible for the particles to end up in one type only.

4. Let f, g : N → N be functions such that f is onto, g is one-one and

f(n) ≥ g(n) for all n ∈ N. Prove that f = g.

Solution : We shall prove the statement P (k) : For every k ∈ N, there

exists a unique xk ∈ N such that f(xk) = g(xk) = k by induction on

k. Given that f is onto. Thus there exists x1 ∈ N such that f(x1) = 1.

But g ≤ f, so g(x1) = 1. Since g is one-one this x1 is unique. Thus we

have proved P (1). Now let P (k) be true. We shall prove that P (k+ 1)

is true. As f is onto, there exists xk+1 ∈ N such that f(xk+1) = k + 1.

But g ≤ f and by induction hypothesis g already takes all values less

that k + 1. So g(xk+1) = k + 1. Since g is one-one this xk+1 is unique.

Thus by the principle of mathematical induction, the P (k) holds for all

natural numbers k. Observe that P (k) implies f = g.

Part III

N.B. Each question in part III carries 12 marks.

1. Abhi and Ash play the following game:

A blank 2010× 2010 array is taken. Abhi starts the game by writing a

real number in any one of the squares of the array. Then Ash writes a

real number in any blank square of the array. The game is continued

till all the squares are filled with numbers. Abhi wins the game if the

determinant of the resulting matrix is non-zero and Ash wins the game

if the determinant of the resulting matrix is 0.

Show that Ash can always win the game.

Solution : First note that 20102 is an even number. So, since Abhi

starts the game, Ash always enters the last number in the array. Hence

she tries to make two rows identical. In particular first two.

2. Show that the polynomial equation with real coefficients

anx
n +an−1x

n−1 + .....+a3x
3 +x2 +x+1 = 0 cannot have all real roots.

Solution : Let p(x) = anx
n + an−1x

n−1 + ..... + a3x
3 + x2 + x + 1.

Note that p(0) 6= 0. Thus it is sufficient to prove that q(x) = p( 1
x
) = 0

cannot have all real roots. Now ,

q(x) = xn + xn−1 + xn−2 + · · ·+ an
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Let b1, b2, . . . , bn be the roots of q(x) = 0. Then
∑n

i=1 bi = −1 and∑
bibj = 1. Thus∑

b2i = (
∑

bi)
2 − 2(

∑
bibj) = 1− 2(1) = −1

But if all bis are real, then
∑
b2i > 0. Thus all the bis cannot be real.

3. Find the sum
n∑

j=0

n∑
i=j

nCi
iCj.

Solution :
∑n

j=0

∑n
i=j

(
n
i

)(
i
j

)
=
∑n

i=0

∑i
j=0

(
n
i

)(
i
j

)
=
∑n

i=0

(
n
i

)∑i
j=0

(
i
j

)
=
∑n

i=0

(
n
i

)
2i

= 3n.

4. Find the g.c.d. of the numbers {213− 2, 313− 3, 413− 4, · · · , 1313− 13}.
Solution : Let d be gcd of the numbers {213−2, 313−3, 413−4, · · · , 1313−
13}. So d|(213 − 2) = 2× 5× 7× 9× 13.

2|(n13 − n) for all n from 1 to 13.

n2 ≡ 1(mod 3) =⇒ n12 ≡ 1(mod 3) =⇒ n13 ≡ n(mod 3) =⇒
3|(n13 − n) for all n from 1 to 13.

n4 ≡ 1(mod 5) =⇒ n12 ≡ 1(mod 5) =⇒ n13 ≡ n(mod 5) =⇒
5|(n13 − n) for all n from 1 to 13.

n6 ≡ 1(mod 7) =⇒ n12 ≡ 1(mod 7) =⇒ n13 ≡ n(mod 7) =⇒
7|(n13 − n) for all n from 1 to 13.

n12 ≡ 1(mod 13) =⇒ n12 ≡ 1(mod 1)3 =⇒ n13 ≡ n(mod 1)3 =⇒
13|(n13 − n) for all n from 1 to 13.

Note that 9 does not divide 313 − 3. Hence gcd {213 − 2, 313 − 3, 413 −
4, · · · , 1313 − 13} is 2× 5× 7× 3× 13.

5. Let {an} be a sequence of real numbers. Suppose {asn} converges for

every fixed positive integer s > 1.

1) If asn → a and atn → b for some fixed positive integers s and t,

then is a = b? Justify.

2) Is the sequence {an} convergent? Justify.

Solution : 1) Suppose asn → a and atn → b for some fixed positive

integers s and t. Consider a subsequence {astn}. As it is a subsequence

of {asn}, it converges to a. Also it is a subsequence of {atn}, therefore

it converges to b. As limit is unique, a = b.

2) The sequence {an} need not be convergent.

Define an = 0 if n is not prime and an = 1 if n is a prime. This sequence

satisfies the above condition but it is not convergent.
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